We study an ergodic mean field game problem with state constraints. In our model the agents are affected by idiosyncratic noise and use a (singular) feedback control to prevent the Brownian motion from exiting the domain. We characterize the equilibrium as the (possibly unique) solution to a second -order MFG system, where the value function blows up at the boundary while the density of the players is smooth and flattens near the boundary as a consequence of the singularity of the drift induced by the feedback strategy of the agents.

Porretta, A., Ricciardi, M. (2024). ERGODIC PROBLEMS FOR SECOND-ORDER MEAN FIELD GAMES WITH STATE CONSTRAINTS, 23(5), 620-644 [10.3934/cpaa.2024028].

ERGODIC PROBLEMS FOR SECOND-ORDER MEAN FIELD GAMES WITH STATE CONSTRAINTS

Porretta A.;Ricciardi M.
2024-01-01

Abstract

We study an ergodic mean field game problem with state constraints. In our model the agents are affected by idiosyncratic noise and use a (singular) feedback control to prevent the Brownian motion from exiting the domain. We characterize the equilibrium as the (possibly unique) solution to a second -order MFG system, where the value function blows up at the boundary while the density of the players is smooth and flattens near the boundary as a consequence of the singularity of the drift induced by the feedback strategy of the agents.
2024
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05
English
Con Impact Factor ISI
Key words and phrases. Mean Field Games
Fokker-Planck Equations
state constraints
er- godic problem
invariant domains
Porretta, A., Ricciardi, M. (2024). ERGODIC PROBLEMS FOR SECOND-ORDER MEAN FIELD GAMES WITH STATE CONSTRAINTS, 23(5), 620-644 [10.3934/cpaa.2024028].
Porretta, A; Ricciardi, M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
PR-CPAA_offprint.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: Copyright dell'editore
Dimensione 397.07 kB
Formato Adobe PDF
397.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/369163
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact