introduction: several brain structures have been consistently found to be involved in visceral pain processing. however, recent research questions the specificity of these regions and it has been suggested that it is not singular activations of brain areas, but their cross-communication that results in perception of pain. moreover, frequency at which neurons are firing could be what separates pain from other sensory modalities which otherwise involve the same anatomical locations. In this test/retest study, we identified the network of sources and their frequencies following visceral pain. methods: 62-channel evoked potentials following electrical stimulation in oesophagus were recorded in twelve healthy volunteers on two separate days. multichannel matching pursuit (MMP) and dipolar source localisation were used. multiple sources responsible for one MMP component were considered to act synchronously as each MMP component is mono-frequency and has a single topography. we first identified components that were reproducible within subjects over recording sessions. these components were then analysed across subjects.Results: MMP and source localisation showed three main brain networks; an early network at similar to 8.3 Hz and similar to 3.5 Hz involving brainstem, operculum, and pre-frontal cortex peaking at similar to 77 ms. this was followed by an operculum, amygdale, mid-cingulate, and anterior-cingulate network at similar to 4.5 Hz. finally, there was an operculum and mid-cingulate network that persisted over the entire time interval, peaking at 245.5 +/- 51.4 ms at similar to 2.1 Hz. conclusion: this study gives evidence of operculum's central integrative role for perception of pain and shows that MMP is a reliable method to study upstream brain activity.

Lelic, D., Olesen, S.s., Valeriani, M., Drewes, A.m. (2012). Brain source connectivity reveals the visceral pain network. NEUROIMAGE, 60(1) [10.1016/j.neuroimage.2011.12.002].

Brain source connectivity reveals the visceral pain network

Valeriani, Massimiliano;
2012-03-01

Abstract

introduction: several brain structures have been consistently found to be involved in visceral pain processing. however, recent research questions the specificity of these regions and it has been suggested that it is not singular activations of brain areas, but their cross-communication that results in perception of pain. moreover, frequency at which neurons are firing could be what separates pain from other sensory modalities which otherwise involve the same anatomical locations. In this test/retest study, we identified the network of sources and their frequencies following visceral pain. methods: 62-channel evoked potentials following electrical stimulation in oesophagus were recorded in twelve healthy volunteers on two separate days. multichannel matching pursuit (MMP) and dipolar source localisation were used. multiple sources responsible for one MMP component were considered to act synchronously as each MMP component is mono-frequency and has a single topography. we first identified components that were reproducible within subjects over recording sessions. these components were then analysed across subjects.Results: MMP and source localisation showed three main brain networks; an early network at similar to 8.3 Hz and similar to 3.5 Hz involving brainstem, operculum, and pre-frontal cortex peaking at similar to 77 ms. this was followed by an operculum, amygdale, mid-cingulate, and anterior-cingulate network at similar to 4.5 Hz. finally, there was an operculum and mid-cingulate network that persisted over the entire time interval, peaking at 245.5 +/- 51.4 ms at similar to 2.1 Hz. conclusion: this study gives evidence of operculum's central integrative role for perception of pain and shows that MMP is a reliable method to study upstream brain activity.
mar-2012
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MED/39
English
Visceral pain
Evoked potentials
Brain source analysis
Multichannel matching pursuit
Brain connectivity
Lelic, D., Olesen, S.s., Valeriani, M., Drewes, A.m. (2012). Brain source connectivity reveals the visceral pain network. NEUROIMAGE, 60(1) [10.1016/j.neuroimage.2011.12.002].
Lelic, D; Olesen, Ss; Valeriani, M; Drewes, Am
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1053811911013991-main.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.17 MB
Formato Adobe PDF
1.17 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/366904
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
social impact