An intriguing feature of the Standard Model is that the representations of the unbroken gauge symmetries are vector-like whereas those of the spontaneously broken gauge symmetries are chiral. Here we provide a toy model which shows that a natural explanation of this property could emerge in higher dimensional field theories and discuss the difficulties that arise in the attempt to construct a realistic theory. An interesting aspect of this type of models is that the 4D low energy effective theory is not generically gauge invariant. However, the non-invariant contributions to the observable quantities are very small, of the order of the square of the ratio between the light particle mass scale and the Kaluza-Klein mass scale. Remarkably, when we take the unbroken limit both the chiral asymmetry and the non-invariant terms disappear.
Salvio, A., Shaposhnikov, M. (2007). Chiral asymmetry from a 5D Higgs mechanism. JOURNAL OF HIGH ENERGY PHYSICS, 2007(11) [10.1088/1126-6708/2007/11/037].
Chiral asymmetry from a 5D Higgs mechanism
Salvio A.;
2007-01-01
Abstract
An intriguing feature of the Standard Model is that the representations of the unbroken gauge symmetries are vector-like whereas those of the spontaneously broken gauge symmetries are chiral. Here we provide a toy model which shows that a natural explanation of this property could emerge in higher dimensional field theories and discuss the difficulties that arise in the attempt to construct a realistic theory. An interesting aspect of this type of models is that the 4D low energy effective theory is not generically gauge invariant. However, the non-invariant contributions to the observable quantities are very small, of the order of the square of the ratio between the light particle mass scale and the Kaluza-Klein mass scale. Remarkably, when we take the unbroken limit both the chiral asymmetry and the non-invariant terms disappear.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.