Melting and solidification processes, intertwined with convective flows, play a fundamental role in geophysical contexts. One of these processes is the formation of melt ponds on glaciers, ice shelves, and sea ice. It is driven by solar radiation and is of great significance for Earth's heat balance, as it significantly lowers the albedo. Through direct numerical simulations and theoretical analysis, we unveil a bistability phenomenon in the melt pond dynamics. As solar radiation intensity and the melt pond's initial depth vary, an abrupt transition occurs: this tipping point transforms the system from a stable fully frozen state to another stable equilibrium state, characterized by a distinct melt pond depth. The physics of this transition can be understood within a heat flux balance model, which exhibits excellent agreement with our numerical results. Together with the Grossmann-Lohse theory for internally heated convection, the model correctly predicts the bulk temperature and the flow strength within the melt ponds, offering insight into the coupling of phase transitions with adjacent turbulent flows and the interplay between convective melting and radiation-driven processes.

Yang, R., Howland, C.j., Liu, H., Verzicco, R., Lohse, D. (2023). Bistability in Radiatively Heated Melt Ponds. PHYSICAL REVIEW LETTERS, 131(23) [10.1103/PhysRevLett.131.234002].

Bistability in Radiatively Heated Melt Ponds

Roberto Verzicco;
2023-01-01

Abstract

Melting and solidification processes, intertwined with convective flows, play a fundamental role in geophysical contexts. One of these processes is the formation of melt ponds on glaciers, ice shelves, and sea ice. It is driven by solar radiation and is of great significance for Earth's heat balance, as it significantly lowers the albedo. Through direct numerical simulations and theoretical analysis, we unveil a bistability phenomenon in the melt pond dynamics. As solar radiation intensity and the melt pond's initial depth vary, an abrupt transition occurs: this tipping point transforms the system from a stable fully frozen state to another stable equilibrium state, characterized by a distinct melt pond depth. The physics of this transition can be understood within a heat flux balance model, which exhibits excellent agreement with our numerical results. Together with the Grossmann-Lohse theory for internally heated convection, the model correctly predicts the bulk temperature and the flow strength within the melt ponds, offering insight into the coupling of phase transitions with adjacent turbulent flows and the interplay between convective melting and radiation-driven processes.
2023
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore ING-IND/06
English
Yang, R., Howland, C.j., Liu, H., Verzicco, R., Lohse, D. (2023). Bistability in Radiatively Heated Melt Ponds. PHYSICAL REVIEW LETTERS, 131(23) [10.1103/PhysRevLett.131.234002].
Yang, R; Howland, Cj; Liu, H; Verzicco, R; Lohse, D
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/362454
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact