The single-index model is a statistical model for intrinsic regression where responses are assumed to depend on a single yet unknown linear combination of the predictors, allowing to express the regression function as E[Y | X] = f (〈v, X〉) for some unknown index vector v and link function f . Conditional methods provide a simple and effective approach to estimate v by averaging moments of X conditioned on Y, but depend on parameters whose optimal choice is unknown and do not provide generalization bounds on f . In this paper we propose a new conditional method converging at√ n rate under an explicit parameter characterization. Moreover, we prove that polynomial partitioning estimates achieve the 1-dimensional min-max rate for regression of Hölder functions when combined to any√ n-convergent index estimator. Overall this yields an estimator for dimension reduction and regression of single-index models that attains statistical optimality in quasilinear time.

Lanteri, A., Maggioni, M., Vigogna, S. (2022). Conditional regression for single-index models. BERNOULLI, 28(4), 3051-3078 [10.3150/22-BEJ1482].

Conditional regression for single-index models

Vigogna S.
2022-01-01

Abstract

The single-index model is a statistical model for intrinsic regression where responses are assumed to depend on a single yet unknown linear combination of the predictors, allowing to express the regression function as E[Y | X] = f (〈v, X〉) for some unknown index vector v and link function f . Conditional methods provide a simple and effective approach to estimate v by averaging moments of X conditioned on Y, but depend on parameters whose optimal choice is unknown and do not provide generalization bounds on f . In this paper we propose a new conditional method converging at√ n rate under an explicit parameter characterization. Moreover, we prove that polynomial partitioning estimates achieve the 1-dimensional min-max rate for regression of Hölder functions when combined to any√ n-convergent index estimator. Overall this yields an estimator for dimension reduction and regression of single-index models that attains statistical optimality in quasilinear time.
2022
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/06
English
Con Impact Factor ISI
dimension reduction
finite-sample bounds
nonparametric regression
Single-index model
Lanteri, A., Maggioni, M., Vigogna, S. (2022). Conditional regression for single-index models. BERNOULLI, 28(4), 3051-3078 [10.3150/22-BEJ1482].
Lanteri, A; Maggioni, M; Vigogna, S
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/361676
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 1
social impact