We set up a new general coorbit space theory for reproducing representations of a locally compact second countable group G that are not necessarily irreducible nor integrable. Our basic assumption is that the kernel associated with the voice transform belongs to a Fréchet space T of functions on G, which generalizes the classical choice T=Lw1(G). Our basic example is T= ⋂ p∈(1,+∞)Lp(G) , or a weighted versions of it. By means of this choice it is possible to treat, for instance, Paley-Wiener spaces and coorbit spaces related to Shannon wavelets and Schrödingerlets.

Dahlke, S., De Mari, F., De Vito, E., Labate, D., Steidl, G., Teschke, G., et al. (2017). Coorbit Spaces with Voice in a Fréchet Space. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 23(1), 141-206 [10.1007/s00041-016-9466-x].

Coorbit Spaces with Voice in a Fréchet Space

Vigogna S.
2017-01-01

Abstract

We set up a new general coorbit space theory for reproducing representations of a locally compact second countable group G that are not necessarily irreducible nor integrable. Our basic assumption is that the kernel associated with the voice transform belongs to a Fréchet space T of functions on G, which generalizes the classical choice T=Lw1(G). Our basic example is T= ⋂ p∈(1,+∞)Lp(G) , or a weighted versions of it. By means of this choice it is possible to treat, for instance, Paley-Wiener spaces and coorbit spaces related to Shannon wavelets and Schrödingerlets.
2017
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05
English
Con Impact Factor ISI
Coorbit spaces
Fréchet spaces
Representations of locally compact groups
Reproducing formulae
Dahlke, S., De Mari, F., De Vito, E., Labate, D., Steidl, G., Teschke, G., et al. (2017). Coorbit Spaces with Voice in a Fréchet Space. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 23(1), 141-206 [10.1007/s00041-016-9466-x].
Dahlke, S; De Mari, F; De Vito, E; Labate, D; Steidl, G; Teschke, G; Vigogna, S
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/361046
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact