In this paper we study the existence and linear stability of almost periodic solutions for a NLS equation on the circle with external parameters. Starting from the seminal result of Bourgain in [15] on the quintic NLS, we propose a novel approach allowing to prove in a unified framework the persistence of finite and infinite dimensional invariant tori, which are the support of the desired solutions. The persistence result is given through a rather abstract "counter-term theorem" a la Herman, directly in the original elliptic variables without passing to action-angle ones. Our framework allows us to find "many more" almost periodic solutions with respect to the existing literature and consider also non-translation invariant PDEs. (C) 2020 L'Association Publications de l'Institut Henri Poincare. Published by Elsevier B.V. All rights reserved.

Biasco, L., Massetti, J.e., Procesi, M. (2021). Almost periodic invariant tori for the NLS on the circle. ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE, 38(3), 711-758 [10.1016/j.anihpc.2020.09.003].

Almost periodic invariant tori for the NLS on the circle

Jessica Elisa Massetti
;
2021-01-01

Abstract

In this paper we study the existence and linear stability of almost periodic solutions for a NLS equation on the circle with external parameters. Starting from the seminal result of Bourgain in [15] on the quintic NLS, we propose a novel approach allowing to prove in a unified framework the persistence of finite and infinite dimensional invariant tori, which are the support of the desired solutions. The persistence result is given through a rather abstract "counter-term theorem" a la Herman, directly in the original elliptic variables without passing to action-angle ones. Our framework allows us to find "many more" almost periodic solutions with respect to the existing literature and consider also non-translation invariant PDEs. (C) 2020 L'Association Publications de l'Institut Henri Poincare. Published by Elsevier B.V. All rights reserved.
2021
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/02
Settore MATH-03/A - Analisi matematica
English
Con Impact Factor ISI
Almost periodic solutions
Nonlinear Schrodinger equation
KAM for PDEs
Biasco, L., Massetti, J.e., Procesi, M. (2021). Almost periodic invariant tori for the NLS on the circle. ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE, 38(3), 711-758 [10.1016/j.anihpc.2020.09.003].
Biasco, L; Massetti, Je; Procesi, M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
5 pubblicazione-Biasco-Massetti-Procesi_AnnIHP.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 736.61 kB
Formato Adobe PDF
736.61 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/360783
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 15
social impact