In this paper we study the existence and linear stability of almost periodic solutions for a NLS equation on the circle with external parameters. Starting from the seminal result of Bourgain in [15] on the quintic NLS, we propose a novel approach allowing to prove in a unified framework the persistence of finite and infinite dimensional invariant tori, which are the support of the desired solutions. The persistence result is given through a rather abstract "counter-term theorem" a la Herman, directly in the original elliptic variables without passing to action-angle ones. Our framework allows us to find "many more" almost periodic solutions with respect to the existing literature and consider also non-translation invariant PDEs. (C) 2020 L'Association Publications de l'Institut Henri Poincare. Published by Elsevier B.V. All rights reserved.

Biasco, L., Massetti, J.e., Procesi, M. (2021). Almost periodic invariant tori for the NLS on the circle. ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE, 38(3), 711-758 [10.1016/j.anihpc.2020.09.003].

Almost periodic invariant tori for the NLS on the circle

Jessica Elisa Massetti
;
2021-01-01

Abstract

In this paper we study the existence and linear stability of almost periodic solutions for a NLS equation on the circle with external parameters. Starting from the seminal result of Bourgain in [15] on the quintic NLS, we propose a novel approach allowing to prove in a unified framework the persistence of finite and infinite dimensional invariant tori, which are the support of the desired solutions. The persistence result is given through a rather abstract "counter-term theorem" a la Herman, directly in the original elliptic variables without passing to action-angle ones. Our framework allows us to find "many more" almost periodic solutions with respect to the existing literature and consider also non-translation invariant PDEs. (C) 2020 L'Association Publications de l'Institut Henri Poincare. Published by Elsevier B.V. All rights reserved.
2021
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/02
English
Con Impact Factor ISI
Almost periodic solutions
Nonlinear Schrodinger equation
KAM for PDEs
Biasco, L., Massetti, J.e., Procesi, M. (2021). Almost periodic invariant tori for the NLS on the circle. ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE, 38(3), 711-758 [10.1016/j.anihpc.2020.09.003].
Biasco, L; Massetti, Je; Procesi, M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
1903.07576.pdf

solo utenti autorizzati

Tipologia: Documento in Pre-print
Licenza: Copyright dell'editore
Dimensione 824.68 kB
Formato Adobe PDF
824.68 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/360783
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 13
social impact