We study stability times for a family of parameter dependent nonlinear Schrodinger equations on the circle, close to the origin. Imposing a suitable Diophantine condition (first introduced by Bourgain), we prove a rather flexible Birkhoff Normal Form theorem, which implies, e.g., exponential and sub-exponential time estimates in the Sobolev and Gevrey class respectively.
Biasco, L., Massetti, J.e., Procesi, M. (2019). An Abstract Birkhoff Normal Form Theorem and Exponential Type Stability of the 1d NLS. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 375(3), 2089-2153 [10.1007/s00220-019-03618-x].
An Abstract Birkhoff Normal Form Theorem and Exponential Type Stability of the 1d NLS
Massetti, J. E.;
2019-01-01
Abstract
We study stability times for a family of parameter dependent nonlinear Schrodinger equations on the circle, close to the origin. Imposing a suitable Diophantine condition (first introduced by Bourgain), we prove a rather flexible Birkhoff Normal Form theorem, which implies, e.g., exponential and sub-exponential time estimates in the Sobolev and Gevrey class respectively.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Biasco-Massetti-Procesi-Birkhoff_Revised6.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Copyright dell'editore
Dimensione
667.03 kB
Formato
Adobe PDF
|
667.03 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.