In this note we study stability times for a family of parameter dependent nonlinear Schrodinger equations on the circle, close to the origin. Imposing a suitable Diophantine condition (first introduced by Bourgain), we state a rather flexible Birkhoff Normal Form theorem, which implies, e.g., exponential and sub-exponential time estimates in the Sobolev and Gevrey class respectively. Complete proofs are given elsewhere (see [BMP18]).
Biasco, L., Massetti, J.e., Procesi, M. (2019). Exponential and sub-exponential stability times for the NLS on the circle. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI, 30(2), 351-364 [10.4171/RLM/850].
Exponential and sub-exponential stability times for the NLS on the circle
Massetti, J. E.;
2019-01-01
Abstract
In this note we study stability times for a family of parameter dependent nonlinear Schrodinger equations on the circle, close to the origin. Imposing a suitable Diophantine condition (first introduced by Bourgain), we state a rather flexible Birkhoff Normal Form theorem, which implies, e.g., exponential and sub-exponential time estimates in the Sobolev and Gevrey class respectively. Complete proofs are given elsewhere (see [BMP18]).File | Dimensione | Formato | |
---|---|---|---|
3c) Biasco-Massetti-Procesi_Lincei.pdf
solo utenti autorizzati
Tipologia:
Documento in Pre-print
Licenza:
Copyright dell'editore
Dimensione
402.95 kB
Formato
Adobe PDF
|
402.95 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.