In this note we study stability times for a family of parameter dependent nonlinear Schrodinger equations on the circle, close to the origin. Imposing a suitable Diophantine condition (first introduced by Bourgain), we state a rather flexible Birkhoff Normal Form theorem, which implies, e.g., exponential and sub-exponential time estimates in the Sobolev and Gevrey class respectively. Complete proofs are given elsewhere (see [BMP18]).

Biasco, L., Massetti, J.e., Procesi, M. (2019). Exponential and sub-exponential stability times for the NLS on the circle. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI, 30(2), 351-364 [10.4171/RLM/850].

Exponential and sub-exponential stability times for the NLS on the circle

Massetti, J. E.;
2019-01-01

Abstract

In this note we study stability times for a family of parameter dependent nonlinear Schrodinger equations on the circle, close to the origin. Imposing a suitable Diophantine condition (first introduced by Bourgain), we state a rather flexible Birkhoff Normal Form theorem, which implies, e.g., exponential and sub-exponential time estimates in the Sobolev and Gevrey class respectively. Complete proofs are given elsewhere (see [BMP18]).
2019
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05
English
Con Impact Factor ISI
Birkhoff Normal Form
nonlinear Schrodinger equation
almost global existence
Biasco, L., Massetti, J.e., Procesi, M. (2019). Exponential and sub-exponential stability times for the NLS on the circle. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI, 30(2), 351-364 [10.4171/RLM/850].
Biasco, L; Massetti, Je; Procesi, M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
3c) Biasco-Massetti-Procesi_Lincei.pdf

solo utenti autorizzati

Tipologia: Documento in Pre-print
Licenza: Copyright dell'editore
Dimensione 402.95 kB
Formato Adobe PDF
402.95 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/360703
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact