S. Carpi et al. (Comm. Math. Phys., 402 (2023), 169–212) proved that every connected (i.e., haploid) Frobenius algebra in a tensor C -category is unitarizable (i.e., isomorphic to a special C -Frobenius algebra). Building on this result, we extend it to the non-connected case by showing that an algebra in a multitensor C -category is unitarizable if and only if it is separable.

Giorgetti, L., Yuan, W., Zhao, X. (2024). Separable algebras in multitensor C*-categories are unitarizable. AIMS MATHEMATICS, 9(5), 11320-11334 [10.3934/math.2024555].

Separable algebras in multitensor C*-categories are unitarizable

Giorgetti, Luca
;
2024-03-22

Abstract

S. Carpi et al. (Comm. Math. Phys., 402 (2023), 169–212) proved that every connected (i.e., haploid) Frobenius algebra in a tensor C -category is unitarizable (i.e., isomorphic to a special C -Frobenius algebra). Building on this result, we extend it to the non-connected case by showing that an algebra in a multitensor C -category is unitarizable if and only if it is separable.
22-mar-2024
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05
English
Con Impact Factor ISI
multitensor C*-category; separable algebra; unitarily separable algebra; C*-Frobenius algebra; Q-system
Giorgetti, L., Yuan, W., Zhao, X. (2024). Separable algebras in multitensor C*-categories are unitarizable. AIMS MATHEMATICS, 9(5), 11320-11334 [10.3934/math.2024555].
Giorgetti, L; Yuan, W; Zhao, X
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/357914
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact