S. Carpi et al. (Comm. Math. Phys., 402 (2023), 169–212) proved that every connected (i.e., haploid) Frobenius algebra in a tensor C -category is unitarizable (i.e., isomorphic to a special C -Frobenius algebra). Building on this result, we extend it to the non-connected case by showing that an algebra in a multitensor C -category is unitarizable if and only if it is separable.
Giorgetti, L., Yuan, W., Zhao, X. (2024). Separable algebras in multitensor C*-categories are unitarizable. AIMS MATHEMATICS, 9(5), 11320-11334 [10.3934/math.2024555].
Separable algebras in multitensor C*-categories are unitarizable
Giorgetti, Luca
;
2024-03-22
Abstract
S. Carpi et al. (Comm. Math. Phys., 402 (2023), 169–212) proved that every connected (i.e., haploid) Frobenius algebra in a tensor C -category is unitarizable (i.e., isomorphic to a special C -Frobenius algebra). Building on this result, we extend it to the non-connected case by showing that an algebra in a multitensor C -category is unitarizable if and only if it is separable.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.