Piezoelectric actuators offer great opportunities for precise and low-cost control of fluids at the microscale. Microfluidic systems with integrated piezoelectric actuators find application as droplet generators, micropumps, and microsorters. To accelerate device design and optimization, modeling and simulation approaches represent an attractive tool, but there are challenges arising from the multiphysics nature of the problem. Simple, potentially real-time approaches to experimentally characterize the fluid response to piezoelectric actuation are also highly desirable. In this work, we propose a strategy for the numerical and experimental characterization of a piezoelectric microfluidic cell sorter. Specifically, we present a 3D coupled multiphysics finite-element model of the system and an easy image-based approach for flow monitoring. Sinusoidal and pulse actuation are considered as case studies to test the proposed methodology. The results demonstrate the validity of the approach as well as the suitability of the system for cell sorting applications.

Brandi, C., De Ninno, A., Verona, E., Businaro, L., Bisegna, P., Caselli, F. (2024). Numerical and experimental characterization of a piezoelectric actuator for microfluidic cell sorting. SENSORS AND ACTUATORS. A, PHYSICAL, 367 [10.1016/j.sna.2024.115074].

Numerical and experimental characterization of a piezoelectric actuator for microfluidic cell sorting

Brandi, Cristian;De Ninno, Adele;Bisegna, Paolo;Caselli, Federica
2024-01-01

Abstract

Piezoelectric actuators offer great opportunities for precise and low-cost control of fluids at the microscale. Microfluidic systems with integrated piezoelectric actuators find application as droplet generators, micropumps, and microsorters. To accelerate device design and optimization, modeling and simulation approaches represent an attractive tool, but there are challenges arising from the multiphysics nature of the problem. Simple, potentially real-time approaches to experimentally characterize the fluid response to piezoelectric actuation are also highly desirable. In this work, we propose a strategy for the numerical and experimental characterization of a piezoelectric microfluidic cell sorter. Specifically, we present a 3D coupled multiphysics finite-element model of the system and an easy image-based approach for flow monitoring. Sinusoidal and pulse actuation are considered as case studies to test the proposed methodology. The results demonstrate the validity of the approach as well as the suitability of the system for cell sorting applications.
2024
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore ING-IND/34
English
Piezoelectric actuator; Microfluidic sorter; Numerical simulations; Finite element method; Multiphysics; Image processing
Brandi, C., De Ninno, A., Verona, E., Businaro, L., Bisegna, P., Caselli, F. (2024). Numerical and experimental characterization of a piezoelectric actuator for microfluidic cell sorting. SENSORS AND ACTUATORS. A, PHYSICAL, 367 [10.1016/j.sna.2024.115074].
Brandi, C; De Ninno, A; Verona, E; Businaro, L; Bisegna, P; Caselli, F
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
2024_Brandi_Caselli_SAA.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 8.1 MB
Formato Adobe PDF
8.1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/356726
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact