In the current scenario, power electronic device-based induction heating (IH) technologies are widely employed in domestic cooking, industrial melting and medical applications. These IH applications are designed using different converter topologies, modulation and control techniques. This review article mainly focuses on the modelling of half-bridge series resonant inverter, electrical and thermal model of IH load. This review also analyses the performance of the converter topologies based on the power conversion stages, switching frequency, power rating, power density, control range, modulation techniques, load handling capacity and efficiency. Moreover, this paper provides insight into the future of IH application, with respect to the adaptation of wide band-gap power semiconductor materials, multi-output topologies, variable-frequency control schemes with mini-mum losses and filters designed to improve source-side power factor. With the identified research gap in the literature, an attempt has also been made to develop a new hybrid modulation technique, to achieve a wide range of power control with high efficiency. A 100 W full-bridge inverter prototype is realised both in simulation and hardware, with various modulation schemes using a PIC16F877A microcontroller. The results are compared with existing techniques and the comparisons reveal that the proposed scheme is highly viable and effective for the rendered applications.
Vishnuram, P., Ramachandiran, G., Babu, T.s., Nastasi, B. (2021). Induction heating in domestic cooking and industrial melting applications: A systematic review on modelling, converter topologies and control schemes. ENERGIES, 14(20) [10.3390/en14206634].
Induction heating in domestic cooking and industrial melting applications: A systematic review on modelling, converter topologies and control schemes
Nastasi B.
2021-01-01
Abstract
In the current scenario, power electronic device-based induction heating (IH) technologies are widely employed in domestic cooking, industrial melting and medical applications. These IH applications are designed using different converter topologies, modulation and control techniques. This review article mainly focuses on the modelling of half-bridge series resonant inverter, electrical and thermal model of IH load. This review also analyses the performance of the converter topologies based on the power conversion stages, switching frequency, power rating, power density, control range, modulation techniques, load handling capacity and efficiency. Moreover, this paper provides insight into the future of IH application, with respect to the adaptation of wide band-gap power semiconductor materials, multi-output topologies, variable-frequency control schemes with mini-mum losses and filters designed to improve source-side power factor. With the identified research gap in the literature, an attempt has also been made to develop a new hybrid modulation technique, to achieve a wide range of power control with high efficiency. A 100 W full-bridge inverter prototype is realised both in simulation and hardware, with various modulation schemes using a PIC16F877A microcontroller. The results are compared with existing techniques and the comparisons reveal that the proposed scheme is highly viable and effective for the rendered applications.File | Dimensione | Formato | |
---|---|---|---|
Vishnuram_Induction_2021.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.74 MB
Formato
Adobe PDF
|
1.74 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.