Monocyte-derived macrophages (M/M) are considered the second cellular target of HIV-1 and a crucial virus reservoir. M/M are widely distributed in all tissues and organs, including the CNS, where they represent the most common HIV-infected cells. Differently from activated CD4+ T lymphocytes, M/M are resistant to the cytopathic effect of HIV and survive HIV infection for a long lime. Moreover, HIV-1 replication in M/M is a key pathogenetic event during the course of HIV-1 infection. Overall findings strongly support the clinical relevance of anti-HIV drugs in M/M. Nucleoside RT inhibitors (NRTIs) are more active against HIV in M/M than in CD4+ T lymphocytes. Their activity is further boosted by the presence of an additional monophosphate group (i.e., a phosphonate group, as in the case of Tenofovir), thus overcoming the bottleneck of the low phosphorylation ability of M/M. In contrast, the antiviral activity of non-NRTIs (not affecting the DNA chain elongation) in M/M is similar to that in CD4+ T lymphocytes. Protease inhibitors are the only clinically approved drugs acting at a late stage of the HIV lifecycle. They are able to interfere with HIV replication in HIV-1 chronically infected M/M, even if at concentrations greater than those observed in HIV-1 chronically infected CD4+ T lymphocytes. Finally, several new drugs have been shown to interfere efficiently with HIV replication in M/M, including entry inhibitors. A better understanding of the activity of the anti-HIV drugs in M/M may represent a key element for the design of effective anti-HIV chemotherapy. © Society for Leukocyte Biology.
Aquaro, S., Svicher, V., Schols, D., Pollicita, M., Antinori, A., Balzarini, J., et al. (2006). Mechanisms underlying activity of antiretroviral drugs in HIV-1-infected macrophages: New therapeutic strategies. JOURNAL OF LEUKOCYTE BIOLOGY, 80(5), 1103-1110 [10.1189/jlb.0606376].
Mechanisms underlying activity of antiretroviral drugs in HIV-1-infected macrophages: New therapeutic strategies
AQUARO, STEFANO;Svicher, V;PERNO, CARLO FEDERICO
2006-01-01
Abstract
Monocyte-derived macrophages (M/M) are considered the second cellular target of HIV-1 and a crucial virus reservoir. M/M are widely distributed in all tissues and organs, including the CNS, where they represent the most common HIV-infected cells. Differently from activated CD4+ T lymphocytes, M/M are resistant to the cytopathic effect of HIV and survive HIV infection for a long lime. Moreover, HIV-1 replication in M/M is a key pathogenetic event during the course of HIV-1 infection. Overall findings strongly support the clinical relevance of anti-HIV drugs in M/M. Nucleoside RT inhibitors (NRTIs) are more active against HIV in M/M than in CD4+ T lymphocytes. Their activity is further boosted by the presence of an additional monophosphate group (i.e., a phosphonate group, as in the case of Tenofovir), thus overcoming the bottleneck of the low phosphorylation ability of M/M. In contrast, the antiviral activity of non-NRTIs (not affecting the DNA chain elongation) in M/M is similar to that in CD4+ T lymphocytes. Protease inhibitors are the only clinically approved drugs acting at a late stage of the HIV lifecycle. They are able to interfere with HIV replication in HIV-1 chronically infected M/M, even if at concentrations greater than those observed in HIV-1 chronically infected CD4+ T lymphocytes. Finally, several new drugs have been shown to interfere efficiently with HIV replication in M/M, including entry inhibitors. A better understanding of the activity of the anti-HIV drugs in M/M may represent a key element for the design of effective anti-HIV chemotherapy. © Society for Leukocyte Biology.File | Dimensione | Formato | |
---|---|---|---|
103_Mechanisms underlying activity.pdf
accesso aperto
Licenza:
Creative commons
Dimensione
97.55 kB
Formato
Adobe PDF
|
97.55 kB | Adobe PDF | Visualizza/Apri |
Questo articolo è pubblicato sotto una Licenza Licenza Creative Commons