In this paper we address the problem of constructing quasi-interpolants in the space of quadratic Powell-Sabin splines on nonuniform triangulations. Quasi-interpolants of optimal approximation order are proposed and numerical tests are presented.

Manni, C., Sablonniere, P. (2007). Quadratic spline quasi-interpolants on Powell-Sabin partitions. ADVANCES IN COMPUTATIONAL MATHEMATICS, 26, 283-304 [10.1007/s10444-006-9025-0].

Quadratic spline quasi-interpolants on Powell-Sabin partitions

MANNI, CARLA;
2007-01-01

Abstract

In this paper we address the problem of constructing quasi-interpolants in the space of quadratic Powell-Sabin splines on nonuniform triangulations. Quasi-interpolants of optimal approximation order are proposed and numerical tests are presented.
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/08 - Analisi Numerica
English
Con Impact Factor ISI
quasi-interpolation; quadratic splines; Powell-Sabin refinement; Bezier-Bernstein representation
Erratum to: Advances in Computational Mathematics DOI 10.1007/s10444-006-9025-0. The article Quadratic spline quasi-interpolants on Powell-Sabin partitions, by Manni and Sablonniere, which was Received: 3 March 2004/Accepted: 11 March 2005 and published in Advances in Computational Mathematics, Volume 26, No. 13 on pp. 237267 was communicated by J.M. Pe˜na.
Manni, C., Sablonniere, P. (2007). Quadratic spline quasi-interpolants on Powell-Sabin partitions. ADVANCES IN COMPUTATIONAL MATHEMATICS, 26, 283-304 [10.1007/s10444-006-9025-0].
Manni, C; Sablonniere, P
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/35250
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 55
social impact