We present a new method for reconstructing the density function underlying a given histogram. First we analyze the univariate case taking the approximating function in a class of "quadratic-like" splines with variable degrees. For the analogous bivariate problem we introduce a new scheme based on the "Boolean sum" of univariate B-splines and show that for a proper choice of the degrees, the splines are positive and satisfy local monotonicity constraints.

Costantini, P., Pelosi, F. (2007). Shape-preserving Histogram Approximation. ADVANCES IN COMPUTATIONAL MATHEMATICS, 26, 205-230 [10.1007/s10444-004-8008-2].

Shape-preserving Histogram Approximation

PELOSI, FRANCESCA
2007-01-01

Abstract

We present a new method for reconstructing the density function underlying a given histogram. First we analyze the univariate case taking the approximating function in a class of "quadratic-like" splines with variable degrees. For the analogous bivariate problem we introduce a new scheme based on the "Boolean sum" of univariate B-splines and show that for a proper choice of the degrees, the splines are positive and satisfy local monotonicity constraints.
2007
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/08 - ANALISI NUMERICA
English
Con Impact Factor ISI
histosplines, area-matching, volume-matching, shape-preserving, tensor-product, boolean sum, tension parameters.
Costantini, P., Pelosi, F. (2007). Shape-preserving Histogram Approximation. ADVANCES IN COMPUTATIONAL MATHEMATICS, 26, 205-230 [10.1007/s10444-004-8008-2].
Costantini, P; Pelosi, F
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/35166
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact