Let C be a right-invariant sub-Laplacian on a connected Lie group G, and let S(R)f:= integral(R)(0) dE(lambda)f, R >= 0, denote the associated "spherical partial sums," where L = integral(infinity)(0) lambda dE(lambda) is the spectral resolution of L. We prove that S(R)f(x) converges a.e. to f(x) as R -> infinity under the assumption log(2 + L)f is an element of L-2(G).

Meaney, C., Muller, D., Prestini, E. (2007). A.e. convergence of spectral sums on Lie groups. ANNALES DE L'INSTITUT FOURIER, 57(5), 1509-1520.

A.e. convergence of spectral sums on Lie groups

PRESTINI, ELENA
2007-01-01

Abstract

Let C be a right-invariant sub-Laplacian on a connected Lie group G, and let S(R)f:= integral(R)(0) dE(lambda)f, R >= 0, denote the associated "spherical partial sums," where L = integral(infinity)(0) lambda dE(lambda) is the spectral resolution of L. We prove that S(R)f(x) converges a.e. to f(x) as R -> infinity under the assumption log(2 + L)f is an element of L-2(G).
2007
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/05 - ANALISI MATEMATICA
English
Rademacher-Menshov theorem; sub-Laplacian; spectral theory
Meaney, C., Muller, D., Prestini, E. (2007). A.e. convergence of spectral sums on Lie groups. ANNALES DE L'INSTITUT FOURIER, 57(5), 1509-1520.
Meaney, C; Muller, D; Prestini, E
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/35094
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact