We introduce the notion of weakly Kahler hyperbolic manifold which generalizes that of Kähler hyperbolic manifold given in the early 1990s by M. Gromov, and establish its basic features. We then investigate its spectral properties and show a spectral gap result (on a suitable modification). As applications, we prove that weakly Kähler hyperbolic manifolds are of general type and we study the geometry of their subvarieties and entire curves, verifying – among other things – various aspects of the Lang and the Green–Griffiths conjectures for this class of manifolds.

Bei, F., Diverio, S., Eyssidiux, P., Trapani, S. (2024). Weakly Kähler hyperbolic manifolds and the Green–Griffiths–Lang conjecture. JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024(807), 257-297 [10.1515/crelle-2023-0094].

Weakly Kähler hyperbolic manifolds and the Green–Griffiths–Lang conjecture

Trapani, S
2024-02-08

Abstract

We introduce the notion of weakly Kahler hyperbolic manifold which generalizes that of Kähler hyperbolic manifold given in the early 1990s by M. Gromov, and establish its basic features. We then investigate its spectral properties and show a spectral gap result (on a suitable modification). As applications, we prove that weakly Kähler hyperbolic manifolds are of general type and we study the geometry of their subvarieties and entire curves, verifying – among other things – various aspects of the Lang and the Green–Griffiths conjectures for this class of manifolds.
8-feb-2024
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03
English
Con Impact Factor ISI
Bei, F., Diverio, S., Eyssidiux, P., Trapani, S. (2024). Weakly Kähler hyperbolic manifolds and the Green–Griffiths–Lang conjecture. JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024(807), 257-297 [10.1515/crelle-2023-0094].
Bei, F; Diverio, S; Eyssidiux, P; Trapani, S
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
WeaklyKahler2024.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 555 kB
Formato Adobe PDF
555 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/350847
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact