Given a nonnegative bounded Radon measure mu on Omega C R-N, we discuss the existence or nonexistence of minima of infinite energy (so-called weak minima, T-minima, renormalized minima) for functionals like J(v) = integral(Omega) alpha(x, v)vertical bar Delta v vertical bar(p) dx - integral(Omega) v d mu where p > 1. In most of our results, alpha(x, s) is coercive. According to the behavior of s -> alpha(x, s) at infinity, existence or nonexistence of such minima is proved, and the convergence of approximating minima of regularized functionals is studied. Differences arise whether the measure charges or not sets of null p-capacity and/or alpha(x, s) blows-up at infinity. Lastly, some results are proved when alpha(x, s) degenerates at infinity.
Porretta, A. (2007). Remarks on existence or loss of minima of infinite energy. ASYMPTOTIC ANALYSIS, 52, 53-94.
Tipologia: | Articolo su rivista |
Citazione: | Porretta, A. (2007). Remarks on existence or loss of minima of infinite energy. ASYMPTOTIC ANALYSIS, 52, 53-94. |
Altre informazioni significative: | 42 |
Lingua: | English |
Settore Scientifico Disciplinare: | Settore MAT/05 - Analisi Matematica |
Revisione (peer review): | Sì, ma tipo non specificato |
Tipo: | Articolo |
Rilevanza: | Rilevanza internazionale |
Stato di pubblicazione: | Pubblicato |
Data di pubblicazione: | 2007 |
Titolo: | Remarks on existence or loss of minima of infinite energy |
Autori: | |
Autori: | Porretta, A |
Appare nelle tipologie: | 01 - Articolo su rivista |