I show that the Ruelle dynamical zeta function, associated to an Anosov diffeomorphism, is the Fredholm determinant of the corresponding Ruelle-Perron-Frobenius transfer operator acting on appropriate Banach spaces. As a consequence it follows, for example, that the zeroes of the dynamical zeta function describe the eigenvalues of the operator and that, for $\Co^\infty$ Anosov diffeomorphisms, the zeta function is entire.

Liverani, C. (2005). Fredholm determinants, Anosov maps and Ruelle resonances. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 13, 1203-1215.

Fredholm determinants, Anosov maps and Ruelle resonances

LIVERANI, CARLANGELO
2005-01-01

Abstract

I show that the Ruelle dynamical zeta function, associated to an Anosov diffeomorphism, is the Fredholm determinant of the corresponding Ruelle-Perron-Frobenius transfer operator acting on appropriate Banach spaces. As a consequence it follows, for example, that the zeroes of the dynamical zeta function describe the eigenvalues of the operator and that, for $\Co^\infty$ Anosov diffeomorphisms, the zeta function is entire.
2005
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/07 - FISICA MATEMATICA
English
Con Impact Factor ISI
arXiv:math/0505049v1
Liverani, C. (2005). Fredholm determinants, Anosov maps and Ruelle resonances. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 13, 1203-1215.
Liverani, C
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/34956
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 30
social impact