We investigate a class of area preserving non-uniformly hyperbolic maps of the two torus. First we establish some results on the regularity of the invariant foliations, then we use this knowledge to estimate the rate of mixing.

Liverani, C., Martens, M. (2005). Convergence to equilibrium for intermittent symplectic maps. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 260, 527-556 [10.1007/s00220-005-1420-8].

Convergence to equilibrium for intermittent symplectic maps

LIVERANI, CARLANGELO;
2005-01-01

Abstract

We investigate a class of area preserving non-uniformly hyperbolic maps of the two torus. First we establish some results on the regularity of the invariant foliations, then we use this knowledge to estimate the rate of mixing.
2005
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/07 - FISICA MATEMATICA
English
Con Impact Factor ISI
Liverani, C., Martens, M. (2005). Convergence to equilibrium for intermittent symplectic maps. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 260, 527-556 [10.1007/s00220-005-1420-8].
Liverani, C; Martens, M
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/34953
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact