We investigate a class of area preserving non-uniformly hyperbolic maps of the two torus. First we establish some results on the regularity of the invariant foliations, then we use this knowledge to estimate the rate of mixing.
Liverani, C., Martens, M. (2005). Convergence to equilibrium for intermittent symplectic maps. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 260, 527-556 [10.1007/s00220-005-1420-8].
Convergence to equilibrium for intermittent symplectic maps
LIVERANI, CARLANGELO;
2005-01-01
Abstract
We investigate a class of area preserving non-uniformly hyperbolic maps of the two torus. First we establish some results on the regularity of the invariant foliations, then we use this knowledge to estimate the rate of mixing.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.