For control-affine systems with a proper Lyapunov function, the classical Jurdjevic-Quinn procedure (see Jurdjevic and Quinn, 1978) gives a well-known and widely used method for the design of feedback controls that asymptotically stabilize the system to some invariant set. In this procedure, all controls are in general required to be activated, i.e. nonzero, at the same time.In this paper we give sufficient conditions under which this stabilization can be achieved by means of sparse feedback controls, i.e., feedback controls having the smallest possible number of nonzero components. We thus obtain a sparse version of the classical Jurdjevic-Quinn theorem.We propose three different explicit stabilizing control strategies, depending on the method used to handle possible discontinuities arising from the definition of the feedback: a time-varying periodic feedback, a sampled feedback, and a hybrid hysteresis. We illustrate our results by applying them to opinion formation models, thus recovering and generalizing former results for such models. (C) 2017 Elsevier Ltd. All rights reserved.

Caponigro, M., Piccoli, B., Rossi, F., Tr('e)lat, E. (2017). Sparse Jurdjevic-Quinn stabilization of dissipative systems. AUTOMATICA, 86, 110-120 [10.1016/j.automatica.2017.08.012].

Sparse Jurdjevic-Quinn stabilization of dissipative systems

Caponigro, M.
;
2017-01-01

Abstract

For control-affine systems with a proper Lyapunov function, the classical Jurdjevic-Quinn procedure (see Jurdjevic and Quinn, 1978) gives a well-known and widely used method for the design of feedback controls that asymptotically stabilize the system to some invariant set. In this procedure, all controls are in general required to be activated, i.e. nonzero, at the same time.In this paper we give sufficient conditions under which this stabilization can be achieved by means of sparse feedback controls, i.e., feedback controls having the smallest possible number of nonzero components. We thus obtain a sparse version of the classical Jurdjevic-Quinn theorem.We propose three different explicit stabilizing control strategies, depending on the method used to handle possible discontinuities arising from the definition of the feedback: a time-varying periodic feedback, a sampled feedback, and a hybrid hysteresis. We illustrate our results by applying them to opinion formation models, thus recovering and generalizing former results for such models. (C) 2017 Elsevier Ltd. All rights reserved.
2017
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05
English
Con Impact Factor ISI
Feedback stabilization
Global stability
Lyapunov methods
Steepest descent
Discontinuous control
Caponigro, M., Piccoli, B., Rossi, F., Tr('e)lat, E. (2017). Sparse Jurdjevic-Quinn stabilization of dissipative systems. AUTOMATICA, 86, 110-120 [10.1016/j.automatica.2017.08.012].
Caponigro, M; Piccoli, B; Rossi, F; Tr('e)lat, E
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0005109817304338-main.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 3.08 MB
Formato Adobe PDF
3.08 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/348633
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact