Let U be a unitary operator acting on the Hilbert space H, and alpha : {1....,m} -> {1,...,k} a partition of the set {1,...,m}. We show that the ergodic average [GRAPHICS] U-n alpha (1) A(1)U(n alpha (2))... Un alpha (m-1) A(m-1)U(n alpha (m)) converges in the weak operator topology if the A(j) belong to the algebra of all the compact operators on H. We write esplicitly the formula for these ergodic averages in the case of pair-partitions. Some results without any restriction on the operators A(j) are also presented in the almost periodic case.

Fidaleo, F. (2007). On the entangled ergodic theorem. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 10(1), 67-77 [10.1142/S0219025707002622].

On the entangled ergodic theorem

FIDALEO, FRANCESCO
2007-01-01

Abstract

Let U be a unitary operator acting on the Hilbert space H, and alpha : {1....,m} -> {1,...,k} a partition of the set {1,...,m}. We show that the ergodic average [GRAPHICS] U-n alpha (1) A(1)U(n alpha (2))... Un alpha (m-1) A(m-1)U(n alpha (m)) converges in the weak operator topology if the A(j) belong to the algebra of all the compact operators on H. We write esplicitly the formula for these ergodic averages in the case of pair-partitions. Some results without any restriction on the operators A(j) are also presented in the almost periodic case.
2007
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/05 - ANALISI MATEMATICA
English
Ergodic theorems; Spectral theory
Fidaleo, F. (2007). On the entangled ergodic theorem. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 10(1), 67-77 [10.1142/S0219025707002622].
Fidaleo, F
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/34848
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 14
social impact