We are concerned with the existence of blowing-up solutions to the following boundary value problem −Δu=λV(x)eu−4πNδ0 in B1,u=0 on ∂B1, where B1 is the unit ball in R2 centered at the origin, V(x) is a positive smooth potential, N is a positive integer (N≥1). Here δ0 defines the Dirac measure with pole at 0, and λ>0 is a small parameter. We assume that N=1 and, under some suitable assumptions on the derivatives of the potential V at 0, we find a solution which exhibits a non-simple blow-up profile as λ→0+.

D'Aprile, T., Wei, J., Zhang, L. (2024). On the construction of non-simple blow-up solutions for the singular Liouville equation with a potential. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 63 [10.1007/s00526-024-02676-x].

On the construction of non-simple blow-up solutions for the singular Liouville equation with a potential

Teresa D'Aprile;
2024-01-01

Abstract

We are concerned with the existence of blowing-up solutions to the following boundary value problem −Δu=λV(x)eu−4πNδ0 in B1,u=0 on ∂B1, where B1 is the unit ball in R2 centered at the origin, V(x) is a positive smooth potential, N is a positive integer (N≥1). Here δ0 defines the Dirac measure with pole at 0, and λ>0 is a small parameter. We assume that N=1 and, under some suitable assumptions on the derivatives of the potential V at 0, we find a solution which exhibits a non-simple blow-up profile as λ→0+.
2024
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05
English
Con Impact Factor ISI
Analysis of PDEs
https://link.springer.com/article/10.1007/s00526-024-02676-x
D'Aprile, T., Wei, J., Zhang, L. (2024). On the construction of non-simple blow-up solutions for the singular Liouville equation with a potential. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 63 [10.1007/s00526-024-02676-x].
D'Aprile, T; Wei, J; Zhang, L
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
s00526-024-02676-x.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 461.79 kB
Formato Adobe PDF
461.79 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/348011
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact