An unmet clinical goal in demyelinating pathologies is to restore the myelin sheath prior to neural degeneration. N-acetylaspartate (NAA) is an acetylated derivative form of aspartate, abundant in the healthy brain but severely reduced during traumatic brain injury and in patients with neurodegenerative pathologies. How extracellular NAA variations impact the remyelination process and, thereby, the ability of oligodendrocytes to remyelinate axons remains unexplored. Here, we evaluated the remyelination properties of the oligodendroglial (OL) mouse cell line Oli-neuM under different concentrations of NAA using a combination of biochemical, qPCR, immunofluorescence assays, and in vitro engagement tests, at NAA doses compatible with those observed in healthy brains and during brain injury. We observed that oligodendroglia cells respond to decreasing levels of NAA by stimulating differentiation and promoting gene expression of myelin proteins in a temporally regulated manner. Low doses of NAA potently stimulate Oli-neuM to engage with synthetic axons. Furthermore, we show a concentration-dependent expression of specific histone deacetylases essential for MBP gene expression under NAA or Clobetasol treatment. These data are consistent with the idea that oligodendrocytes respond to lowering the NAA concentration by activating the remyelination process via deacetylase activation.
Dominicis, A., DEL GIOVANE, A., Torreggiani, M., Recchia, A.d., Ciccarone, F., Ciriolo, M.r., et al. (2023). N-Acetylaspartate Drives Oligodendroglial Differentiation via Histone Deacetylase Activation. CELLS, 12(14) [10.3390/cells12141861].
N-Acetylaspartate Drives Oligodendroglial Differentiation via Histone Deacetylase Activation
Alessandra DominicisInvestigation
;Alice Del Giovane
Investigation
;Antonella Damiana RecchiaWriting – Original Draft Preparation
;Fabio CiccaroneMembro del Collaboration Group
;Maria Rosa CirioloMembro del Collaboration Group
;Antonella Ragnini
Conceptualization
2023-07-14
Abstract
An unmet clinical goal in demyelinating pathologies is to restore the myelin sheath prior to neural degeneration. N-acetylaspartate (NAA) is an acetylated derivative form of aspartate, abundant in the healthy brain but severely reduced during traumatic brain injury and in patients with neurodegenerative pathologies. How extracellular NAA variations impact the remyelination process and, thereby, the ability of oligodendrocytes to remyelinate axons remains unexplored. Here, we evaluated the remyelination properties of the oligodendroglial (OL) mouse cell line Oli-neuM under different concentrations of NAA using a combination of biochemical, qPCR, immunofluorescence assays, and in vitro engagement tests, at NAA doses compatible with those observed in healthy brains and during brain injury. We observed that oligodendroglia cells respond to decreasing levels of NAA by stimulating differentiation and promoting gene expression of myelin proteins in a temporally regulated manner. Low doses of NAA potently stimulate Oli-neuM to engage with synthetic axons. Furthermore, we show a concentration-dependent expression of specific histone deacetylases essential for MBP gene expression under NAA or Clobetasol treatment. These data are consistent with the idea that oligodendrocytes respond to lowering the NAA concentration by activating the remyelination process via deacetylase activation.File | Dimensione | Formato | |
---|---|---|---|
Dominics_N-Acetylaspartate-Drives_2023.pdf
accesso aperto
Descrizione: Dominicis et al., 2023 article PDF
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
7.22 MB
Formato
Adobe PDF
|
7.22 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.