Background: Spinal cord injury (SCI) is a critical medical condition that causes numerous impairments leading to accompanying disability. Robotic-assisted gait training (RAGT) offers many advantages, including the capability to increase the intensity and total duration of training while maintaining a physiological gait pattern. The effects of the RAGT 'Lokomat' on various impairments following SCI remain unclear. Objectives: This review was conducted to examine the impacts of the RAGT 'Lokomat' on the impairments following SCI. Methods: We searched PubMed, SCOPUS, PEDro, REHABDATA, MEDLINE, EMBASE, and web of science from inception to January 2021. Experimental studies examining the effects of the Lokomat on the impairments following incomplete SCI were selected. The methodological quality was assessed using the Physiotherapy Evidence Database (PEDro) scale. Results: Sixteen studies were met the inclusion criteria. Thirteen were randomized controlled trials, two were clinical trials, and one was a pilot study. The scores on the PEDro scale ranged from two to eight, with a median score of six. The results showed evidence for the beneficial effects of the Lokomat on many motor impairments following incomplete SCI. Conclusions: The Lokomat may improve gait speed, walking distance, strength, range of motion, and mobility after incomplete SCI. There is insufficient evidence for the effect of the Lokomat on balance, depression, cardiorespiratory fitness, and quality of life. The effects of the Lokomat on the lower extremity spasticity were limited.
Alashram, A., Annino, G., Padua, E. (2021). Robot-assisted gait training in individuals with spinal cord injury: A systematic review for the clinical effectiveness of Lokomat. JOURNAL OF CLINICAL NEUROSCIENCE, 91, 260-269 [10.1016/j.jocn.2021.07.019].
Robot-assisted gait training in individuals with spinal cord injury: A systematic review for the clinical effectiveness of Lokomat.
Annino GSupervision
;
2021-09-01
Abstract
Background: Spinal cord injury (SCI) is a critical medical condition that causes numerous impairments leading to accompanying disability. Robotic-assisted gait training (RAGT) offers many advantages, including the capability to increase the intensity and total duration of training while maintaining a physiological gait pattern. The effects of the RAGT 'Lokomat' on various impairments following SCI remain unclear. Objectives: This review was conducted to examine the impacts of the RAGT 'Lokomat' on the impairments following SCI. Methods: We searched PubMed, SCOPUS, PEDro, REHABDATA, MEDLINE, EMBASE, and web of science from inception to January 2021. Experimental studies examining the effects of the Lokomat on the impairments following incomplete SCI were selected. The methodological quality was assessed using the Physiotherapy Evidence Database (PEDro) scale. Results: Sixteen studies were met the inclusion criteria. Thirteen were randomized controlled trials, two were clinical trials, and one was a pilot study. The scores on the PEDro scale ranged from two to eight, with a median score of six. The results showed evidence for the beneficial effects of the Lokomat on many motor impairments following incomplete SCI. Conclusions: The Lokomat may improve gait speed, walking distance, strength, range of motion, and mobility after incomplete SCI. There is insufficient evidence for the effect of the Lokomat on balance, depression, cardiorespiratory fitness, and quality of life. The effects of the Lokomat on the lower extremity spasticity were limited.File | Dimensione | Formato | |
---|---|---|---|
Robot-assisted JCN2021.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
563.96 kB
Formato
Adobe PDF
|
563.96 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.