Accurate identification and quantification of microplastic pollution in marine sediments are crucial for assessing their ecological impact. In this study, we explored the potential of Nuclear Magnetic Resonance (NMR) spectroscopy as an analytical tool for the analysis of microplastics in complex environmental matrices such as marine sediments. Two common plastic polymers, polystyrene (PS) and acrylonitrile butadiene styrene (ABS), were investigated. The marine sediments facing the Tiber River mouth (Italy) were collected according to a bathy-metric gradient. Results demonstrated the successful detection and quantification of PS in all sediment samples (within a range of 12.3-64.6 mu g/L), while no ABS significant signals were found. An increment trend with depth was observed in the PS signal, relatable to its physicochemical properties and the Tiber River plume hydrodynamic characteristics. The NMR's non-destructive nature and minimal sample preparation represent a promising avenue for standardizing protocols to assess the microplastic distribution and impact in marine sediments.
Papini, G., Petrella, G., Cicero, D.o., Boglione, C., Rakaj, A. (2024). Identification and quantification of polystyrene microplastics in marine sediments facing a river mouth through NMR spectroscopy. MARINE POLLUTION BULLETIN, 198 [10.1016/j.marpolbul.2023.115784].
Identification and quantification of polystyrene microplastics in marine sediments facing a river mouth through NMR spectroscopy
Papini, Giulia
;Petrella, Greta
;Cicero, Daniel Oscar;Boglione, Clara;Rakaj, Arnold
2024-01-01
Abstract
Accurate identification and quantification of microplastic pollution in marine sediments are crucial for assessing their ecological impact. In this study, we explored the potential of Nuclear Magnetic Resonance (NMR) spectroscopy as an analytical tool for the analysis of microplastics in complex environmental matrices such as marine sediments. Two common plastic polymers, polystyrene (PS) and acrylonitrile butadiene styrene (ABS), were investigated. The marine sediments facing the Tiber River mouth (Italy) were collected according to a bathy-metric gradient. Results demonstrated the successful detection and quantification of PS in all sediment samples (within a range of 12.3-64.6 mu g/L), while no ABS significant signals were found. An increment trend with depth was observed in the PS signal, relatable to its physicochemical properties and the Tiber River plume hydrodynamic characteristics. The NMR's non-destructive nature and minimal sample preparation represent a promising avenue for standardizing protocols to assess the microplastic distribution and impact in marine sediments.File | Dimensione | Formato | |
---|---|---|---|
Identification and quantification of polystyrene microplastics.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.57 MB
Formato
Adobe PDF
|
2.57 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.