We investigated whether prostaglandin ethanolamides (prostamides) E(2), F(2alpha), and D(2) exert some of their effects by 1) activating prostanoid receptors either per se or after conversion into the corresponding prostaglandins; 2) interacting with proteins for the inactivation of the endocannabinoid N-arachidonoylethanolamide (AEA), for example fatty acid amide hydrolase (FAAH), thereby enhancing AEA endogenous levels; or 3) activating the vanilloid receptor type-1 (TRPV1). Prostamides potently stimulated cat iris contraction with potency approaching that of the corresponding prostaglandins. However, prostamides D(2), E(2), and F(2alpha) exhibited no meaningful interaction with the cat recombinant FP receptor, nor with human recombinant DP, EP(1-4), FP, IP, and TP prostanoid receptors. Prostamide F(2alpha) was also very weak or inactive in a panel of bioassays specific for the various prostanoid receptors. None of the prostamides inhibited AEA enzymatic hydrolysis by FAAH in cell homogenates, or AEA cellular uptake in intact cells. Furthermore, less than 3% of the compounds were hydrolyzed to the corresponding prostaglandins when incubated for 4 h with homogenates of rat brain, lung, or liver, and cat iris or ciliary body. Very little temperature-dependent uptake of prostamides was observed after incubation with rat brain synaptosomes or RBL-2H3 cells. We suggest that prostamides' most prominent pharmacological actions are not due to transformation into prostaglandins, activation of prostanoid receptors, enhancement of AEA levels, or gating of TRPV1 receptors, but possibly to interaction with novel receptors that seem to be functional in the cat iris.

Matias, I., Chen, J., De Petrocellis, L., Bisogno, T., Ligresti, A., Fezza, F., et al. (2004). Prostaglandin ethanolamides (prostamides): in vitro pharmacology and metabolism. THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 309, 745-757 [10.1124/jpet.103.061705].

Prostaglandin ethanolamides (prostamides): in vitro pharmacology and metabolism

FEZZA, FILOMENA;
2004-01-01

Abstract

We investigated whether prostaglandin ethanolamides (prostamides) E(2), F(2alpha), and D(2) exert some of their effects by 1) activating prostanoid receptors either per se or after conversion into the corresponding prostaglandins; 2) interacting with proteins for the inactivation of the endocannabinoid N-arachidonoylethanolamide (AEA), for example fatty acid amide hydrolase (FAAH), thereby enhancing AEA endogenous levels; or 3) activating the vanilloid receptor type-1 (TRPV1). Prostamides potently stimulated cat iris contraction with potency approaching that of the corresponding prostaglandins. However, prostamides D(2), E(2), and F(2alpha) exhibited no meaningful interaction with the cat recombinant FP receptor, nor with human recombinant DP, EP(1-4), FP, IP, and TP prostanoid receptors. Prostamide F(2alpha) was also very weak or inactive in a panel of bioassays specific for the various prostanoid receptors. None of the prostamides inhibited AEA enzymatic hydrolysis by FAAH in cell homogenates, or AEA cellular uptake in intact cells. Furthermore, less than 3% of the compounds were hydrolyzed to the corresponding prostaglandins when incubated for 4 h with homogenates of rat brain, lung, or liver, and cat iris or ciliary body. Very little temperature-dependent uptake of prostamides was observed after incubation with rat brain synaptosomes or RBL-2H3 cells. We suggest that prostamides' most prominent pharmacological actions are not due to transformation into prostaglandins, activation of prostanoid receptors, enhancement of AEA levels, or gating of TRPV1 receptors, but possibly to interaction with novel receptors that seem to be functional in the cat iris.
2004
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore BIO/10 - BIOCHIMICA
English
Matias, I., Chen, J., De Petrocellis, L., Bisogno, T., Ligresti, A., Fezza, F., et al. (2004). Prostaglandin ethanolamides (prostamides): in vitro pharmacology and metabolism. THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 309, 745-757 [10.1124/jpet.103.061705].
Matias, I; Chen, J; De Petrocellis, L; Bisogno, T; Ligresti, A; Fezza, F; Krauss, A; Shi, L; Protzman, C; Li, C; Liang, Y; Nieves, A; Kedzie, K; Burk, R; Di Marzo, V; Woodward, Df
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/34654
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 127
  • ???jsp.display-item.citation.isi??? 115
social impact