purpose: the purpose of this study is to investigate the robustness of pharmacokinetic modelling of DCE-MRI brain tumour data and to ascertain reliable perfusion parameters through a model selection process and a stability test. Methods: DCE-MRI data of 14 patients with primary brain tumours were analysed using the tofts model (TM), the extended tofts model (ETM), the shutter speed model (SSM) and the extended shutter speed model (ESSM). A no-effect model (NEM) was implemented to assess overfitting of data by the other models. For each lesion, the Akaike Information Criteria (AIC) was used to build a 3D model selection map. The variability of each pharmacokinetic parameter extracted from this map was assessed with a noise propagation procedure, resulting in voxel-wise distributions of the coefficient of variation (CV). results: the model selection map over all patients showed NEM had the best fit in 35.5% of voxels, followed by ETM (32%), TM (28.2%), SSM (4.3%) and ESSM (< 0.1%). In analysing the reliability of Ktrans, when considering regions with a CV < 20%, ≈ 25% of voxels were found to be stable across all patients. the remaining 75% of voxels were considered unreliable. conclusions: The majority of studies quantifying DCE-MRI data in brain tumours only consider a single model and whole tumour statistics for the output parameters. appropriate model selection, considering tissue biology and its effects on blood brain barrier permeability and exchange conditions, together with an analysis on the reliability and stability of the calculated parameters, is critical in processing robust brain tumour DCE-MRI data.

Inglese, M., Ordidge, K.l., Honeyfield, L., Barwick, T.d., Aboagye, E.o., Waldman, A.d., et al. (2019). Reliability of dynamic contrast-enhanced magnetic resonance imaging data in primary brain tumours: a comparison of Tofts and shutter speed models. NEURORADIOLOGY, 61(12), 1375-1386 [10.1007/s00234-019-02265-2].

Reliability of dynamic contrast-enhanced magnetic resonance imaging data in primary brain tumours: a comparison of Tofts and shutter speed models

Inglese M.;
2019-01-01

Abstract

purpose: the purpose of this study is to investigate the robustness of pharmacokinetic modelling of DCE-MRI brain tumour data and to ascertain reliable perfusion parameters through a model selection process and a stability test. Methods: DCE-MRI data of 14 patients with primary brain tumours were analysed using the tofts model (TM), the extended tofts model (ETM), the shutter speed model (SSM) and the extended shutter speed model (ESSM). A no-effect model (NEM) was implemented to assess overfitting of data by the other models. For each lesion, the Akaike Information Criteria (AIC) was used to build a 3D model selection map. The variability of each pharmacokinetic parameter extracted from this map was assessed with a noise propagation procedure, resulting in voxel-wise distributions of the coefficient of variation (CV). results: the model selection map over all patients showed NEM had the best fit in 35.5% of voxels, followed by ETM (32%), TM (28.2%), SSM (4.3%) and ESSM (< 0.1%). In analysing the reliability of Ktrans, when considering regions with a CV < 20%, ≈ 25% of voxels were found to be stable across all patients. the remaining 75% of voxels were considered unreliable. conclusions: The majority of studies quantifying DCE-MRI data in brain tumours only consider a single model and whole tumour statistics for the output parameters. appropriate model selection, considering tissue biology and its effects on blood brain barrier permeability and exchange conditions, together with an analysis on the reliability and stability of the calculated parameters, is critical in processing robust brain tumour DCE-MRI data.
2019
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore FIS/07
Settore ING-INF/06
English
DCE-MRI
Glioma
Primary brain tumour
Shutter speed model
Tofts model
Inglese, M., Ordidge, K.l., Honeyfield, L., Barwick, T.d., Aboagye, E.o., Waldman, A.d., et al. (2019). Reliability of dynamic contrast-enhanced magnetic resonance imaging data in primary brain tumours: a comparison of Tofts and shutter speed models. NEURORADIOLOGY, 61(12), 1375-1386 [10.1007/s00234-019-02265-2].
Inglese, M; Ordidge, Kl; Honeyfield, L; Barwick, Td; Aboagye, Eo; Waldman, Ad; Grech-Sollars, M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Inglese2019_Article_ReliabilityOfDynamicContrast-e.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.88 MB
Formato Adobe PDF
1.88 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/345385
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact