Multiple antennas at each user equipment (UE) and/or thousands of antennas at the base station (BS) comprise the extremely spectrum efficient large scale multi-user multiple input multiple output system (BS). Due to space constraints, the closely spaced numerous antennas at each UE may cause inter antenna interference (IAI). Furthermore, when one UE comes into contact with another UE in the same cellular network, multi-user interference (MUI) may be introduced to the received signal. To mitigate IAI, efficient precoding pre-coding is necessary at each UE, and the MUI present at the BS can be canceled by efficient Multi-user Detection (MUD) techniques. The majority of earlier literature deal with one or more of these interferences. This paper implements a joint pre-coding and MUD, Lenstra-Lovasz (LLL) based Lattice Reduction (LR) assisted likelihood accent search (LAS) (LLL-LR-LAS), to mitigate IAI and MUI simultaneously LLL-based LR pre-coding mitigates IAI at each UE, and the LAS algorithm is a neighborhood search-based MUD that cancels BS MUI. The proposed approaches' performance was evaluated using Bit Error Rate analysis, and their complexity were determined using multiplication and addition.
Bagadi, K., Ravikumar, C., Alibakhshikenari, M., Challa, N., Rajesh, A., Aïssa, S., et al. (2022). Precoded Large Scale Multi-User-MIMO System Using Likelihood Ascent Search for Signal Detection. RADIO SCIENCE, 57(12) [10.1029/2022RS007573].
Precoded Large Scale Multi-User-MIMO System Using Likelihood Ascent Search for Signal Detection
Alibakhshikenari, M;Limiti, E
2022-12-01
Abstract
Multiple antennas at each user equipment (UE) and/or thousands of antennas at the base station (BS) comprise the extremely spectrum efficient large scale multi-user multiple input multiple output system (BS). Due to space constraints, the closely spaced numerous antennas at each UE may cause inter antenna interference (IAI). Furthermore, when one UE comes into contact with another UE in the same cellular network, multi-user interference (MUI) may be introduced to the received signal. To mitigate IAI, efficient precoding pre-coding is necessary at each UE, and the MUI present at the BS can be canceled by efficient Multi-user Detection (MUD) techniques. The majority of earlier literature deal with one or more of these interferences. This paper implements a joint pre-coding and MUD, Lenstra-Lovasz (LLL) based Lattice Reduction (LR) assisted likelihood accent search (LAS) (LLL-LR-LAS), to mitigate IAI and MUI simultaneously LLL-based LR pre-coding mitigates IAI at each UE, and the LAS algorithm is a neighborhood search-based MUD that cancels BS MUI. The proposed approaches' performance was evaluated using Bit Error Rate analysis, and their complexity were determined using multiplication and addition.File | Dimensione | Formato | |
---|---|---|---|
Precoded Large Scale Multi-User-MIMO System Using Likelihood Ascent Search for Signal Detection.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.99 MB
Formato
Adobe PDF
|
2.99 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.