We estimate parameters of a general isolation-with-migration model using resequence data from mitochondrial DNA (mtDNA), the Y chromosome, and two loci on the X chromosome in samples of 25-50 individuals from each of 10 human populations. Application of a coalescent-based Markov chain Monte Carlo technique allows simultaneous inference of divergence times, rates of gene flow, as well as changes in effective population size. Results from comparisons between sub-Saharan African and Eurasian populations estimate that 1500 individuals founded the ancestral Eurasian population similar to 40 thousand years ago (KYA). Furthermore, these small Eurasian founding populations appear to have grown much more dramatically than either African or Oceanian populations. Analyses of sub-Saharan African populations provide little evidence for a history, of population bottlenecks and suggest that die), began diverging from one another upward of 50 KYA. We surmise that ancestral African populations had already been geographically structured prior to the founding of ancestral Eurasian populations. African populations are shown to experience low levels of mitochondrial DNA gene flow, but high levels of Y chromosome gene flow. In particular, Y chromosome gene flow appears to be asymmetric, i.e., from the Bantu-speaking population into other African populations. Conversely, mitochondrial gene flow is more extensive between non-African populations, but appears to be absent between European and Asian Populations.

Garrigan, D., Kingan, S.B., Pilkington, M.M., Wilder, J.A., Cox, M.P., Soodyall, H., et al. (2007). Inferring human population sizes, divergence times and rates of gene flow from mitochondrial, X and Y chromosome resequencing data. GENETICS, 177(4), 2195-2207 [10.1534/genetics.107.077495].

Inferring human population sizes, divergence times and rates of gene flow from mitochondrial, X and Y chromosome resequencing data

NOVELLETTO, ANDREA;
2007-01

Abstract

We estimate parameters of a general isolation-with-migration model using resequence data from mitochondrial DNA (mtDNA), the Y chromosome, and two loci on the X chromosome in samples of 25-50 individuals from each of 10 human populations. Application of a coalescent-based Markov chain Monte Carlo technique allows simultaneous inference of divergence times, rates of gene flow, as well as changes in effective population size. Results from comparisons between sub-Saharan African and Eurasian populations estimate that 1500 individuals founded the ancestral Eurasian population similar to 40 thousand years ago (KYA). Furthermore, these small Eurasian founding populations appear to have grown much more dramatically than either African or Oceanian populations. Analyses of sub-Saharan African populations provide little evidence for a history, of population bottlenecks and suggest that die), began diverging from one another upward of 50 KYA. We surmise that ancestral African populations had already been geographically structured prior to the founding of ancestral Eurasian populations. African populations are shown to experience low levels of mitochondrial DNA gene flow, but high levels of Y chromosome gene flow. In particular, Y chromosome gene flow appears to be asymmetric, i.e., from the Bantu-speaking population into other African populations. Conversely, mitochondrial gene flow is more extensive between non-African populations, but appears to be absent between European and Asian Populations.
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore BIO/18 - Genetica
English
Con Impact Factor ISI
mitochondrial DNA; Africa; article; Asia; comparative study; controlled study; Europe; gene flow; gene isolation; gene locus; gene sequence; genetic model; genetic variability; history; human; mitochondrion; Monte Carlo method; population genetics; population growth; population size; priority journal; probability; X chromosome; Y chromosome; Base Sequence; Chromosomes, Human, X; Chromosomes, Human, Y; Continental Population Groups; DNA, Mitochondrial; Gene Flow; Genetics, Population; Humans; Markov Chains; Population Density; Population Dynamics
Garrigan, D., Kingan, S.B., Pilkington, M.M., Wilder, J.A., Cox, M.P., Soodyall, H., et al. (2007). Inferring human population sizes, divergence times and rates of gene flow from mitochondrial, X and Y chromosome resequencing data. GENETICS, 177(4), 2195-2207 [10.1534/genetics.107.077495].
Garrigan, D; Kingan, S; Pilkington, M; Wilder, J; Cox, M; Soodyall, H; Strassmann, B; Destro Bisol, G; De Knijff, P; Novelletto, A; Friedlaender, J; Hammer, M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Garriganetal.pdf

accesso aperto

Dimensione 383.01 kB
Formato Adobe PDF
383.01 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2108/34476
Citazioni
  • ???jsp.display-item.citation.pmc??? 32
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 57
social impact