We study multidimensional stochastic volatility models in which the volatility process is a positive continuous function of a continuous multidimensional Volterra process that can be not self-similar. The main results obtained in this paper are a generalization of the results due, in the one-dimensional case, to Cellupica and Pacchiarotti (J. Theor. Probab. 34(2):682-727). We state some (pathwise and finite-dimensional) large deviation principles for the scaled log-price and as a consequence some (pathwise and finite-dimensional) short-time large deviation principles.

Catalini, G., Pacchiarotti, B. (2023). Asymptotics for multifactor Volterra type stochastic volatility models. STOCHASTIC ANALYSIS AND APPLICATIONS, 41(6), 1025-1055 [10.1080/07362994.2022.2120012].

Asymptotics for multifactor Volterra type stochastic volatility models

Catalini G.
;
Pacchiarotti B.
2023-01-01

Abstract

We study multidimensional stochastic volatility models in which the volatility process is a positive continuous function of a continuous multidimensional Volterra process that can be not self-similar. The main results obtained in this paper are a generalization of the results due, in the one-dimensional case, to Cellupica and Pacchiarotti (J. Theor. Probab. 34(2):682-727). We state some (pathwise and finite-dimensional) large deviation principles for the scaled log-price and as a consequence some (pathwise and finite-dimensional) short-time large deviation principles.
2023
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/06
Settore MATH-03/B - Probabilità e statistica matematica
English
Large deviations
Volterra type Gaussian processes
multifactor stochastic volatility models
Catalini, G., Pacchiarotti, B. (2023). Asymptotics for multifactor Volterra type stochastic volatility models. STOCHASTIC ANALYSIS AND APPLICATIONS, 41(6), 1025-1055 [10.1080/07362994.2022.2120012].
Catalini, G; Pacchiarotti, B
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
2023CataliniPacchiarottiStAnApp.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 2.52 MB
Formato Adobe PDF
2.52 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/344603
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact