A class of second order nonautonomous quasilinear Hamiltonian systems (S) is considered. We show that, for any T < T0, where T0 depends on the growth coefficients of the Hamiltonian function H, there exists a T-periodic and T/2-antiperiodic solution of the system (S) below, provided two symmetry conditions hold for H.
Girardi, M., Matzeu, M. (2007). Existence of periodic solutions for some second order quasilinear Hamiltonian systems. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI, 18(1), 1-9.
Existence of periodic solutions for some second order quasilinear Hamiltonian systems
MATZEU, MICHELE
2007-01-01
Abstract
A class of second order nonautonomous quasilinear Hamiltonian systems (S) is considered. We show that, for any T < T0, where T0 depends on the growth coefficients of the Hamiltonian function H, there exists a T-periodic and T/2-antiperiodic solution of the system (S) below, provided two symmetry conditions hold for H.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.