The development of biocompatible nanomaterials that interface with human skin and tissue is critical for advancing prosthetics and other therapeutic medical needs. In this perspective, the development of nanoparticles with cytotoxicity and antibiofilm properties and biocompatibility characteristics are important. Metallic silver (Ag) exhibits good biocompatibility, but it is often challenging to integrate it into a nanocomposite without compromising its antibiofilm properties for optimal applications. In this study, new polymer nanocomposites (PNCs) with ultra-low filling content (0.0023–0.046 wt%) of Ag nanoplates were manufactured and tested. The cytotoxicity and antibiofilm activity of different composites with polypropylene (PP) matrix were examined. At first, PNCs surface were analyzed by means of AFM (atomic force microscopy) with phase contrast evaluation and FTIR (Fourier-transform infrared spectroscopy) to study the Ag nanoplates distribution. Subsequently, the cytotoxicity and growth properties of biofilms were assessed by MTT assay protocol and detection of nitric oxide radicals. Antibacterial and antibiofilm activities were measured against Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (K. pneumoniae). The PNCs with silver exhibited antibiofilm activity although they did not inhibit regular planktonic bacterial growth. Moreover, the PNCs were not cytotoxic to mammalian cells and did not induce significant immune response. These features reveal the potential of the PNCs developed in this study for usage in fabrication of prosthetics and other smart structures for biomedical applications.

Bellisario, D., Santo, L., Quadrini, F., Hassiba, M., Bader, N., Chowdhury, S.h., et al. (2023). Cytotoxicity and Antibiofilm Activity of Silver-Polypropylene Nanocomposites. ANTIBIOTICS, 12(5) [10.3390/antibiotics12050924].

Cytotoxicity and Antibiofilm Activity of Silver-Polypropylene Nanocomposites

Bellisario D.;Santo L.;Quadrini F.;
2023-01-01

Abstract

The development of biocompatible nanomaterials that interface with human skin and tissue is critical for advancing prosthetics and other therapeutic medical needs. In this perspective, the development of nanoparticles with cytotoxicity and antibiofilm properties and biocompatibility characteristics are important. Metallic silver (Ag) exhibits good biocompatibility, but it is often challenging to integrate it into a nanocomposite without compromising its antibiofilm properties for optimal applications. In this study, new polymer nanocomposites (PNCs) with ultra-low filling content (0.0023–0.046 wt%) of Ag nanoplates were manufactured and tested. The cytotoxicity and antibiofilm activity of different composites with polypropylene (PP) matrix were examined. At first, PNCs surface were analyzed by means of AFM (atomic force microscopy) with phase contrast evaluation and FTIR (Fourier-transform infrared spectroscopy) to study the Ag nanoplates distribution. Subsequently, the cytotoxicity and growth properties of biofilms were assessed by MTT assay protocol and detection of nitric oxide radicals. Antibacterial and antibiofilm activities were measured against Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (K. pneumoniae). The PNCs with silver exhibited antibiofilm activity although they did not inhibit regular planktonic bacterial growth. Moreover, the PNCs were not cytotoxic to mammalian cells and did not induce significant immune response. These features reveal the potential of the PNCs developed in this study for usage in fabrication of prosthetics and other smart structures for biomedical applications.
2023
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore ING-IND/16
English
Ag nanocomposites
antibiofilm activity
cells viability measurement
metallic silver nanoplates
Bellisario, D., Santo, L., Quadrini, F., Hassiba, M., Bader, N., Chowdhury, S.h., et al. (2023). Cytotoxicity and Antibiofilm Activity of Silver-Polypropylene Nanocomposites. ANTIBIOTICS, 12(5) [10.3390/antibiotics12050924].
Bellisario, D; Santo, L; Quadrini, F; Hassiba, M; Bader, N; Chowdhury, Sh; Hassan, Mk; Zughaier, Sm
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/339110
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact