The paper proposes a method for the construction of C^2 quasi-interpolating functions with tension properties. The constructed quasi-interpolant is a parametric cubic curve and its shape can be easily controlled via tension parameters which have an immediate geometric interpretation. Numerical examples are presented.

Lamberti, P., Manni, C. (2004). Tensioned Quasi--interpolation via Geometric Continuity. ADVANCES IN COMPUTATIONAL MATHEMATICS, 20(1-3), 105-127 [10.1023/A:1025823221346].

Tensioned Quasi--interpolation via Geometric Continuity

MANNI, CARLA
2004-01-01

Abstract

The paper proposes a method for the construction of C^2 quasi-interpolating functions with tension properties. The constructed quasi-interpolant is a parametric cubic curve and its shape can be easily controlled via tension parameters which have an immediate geometric interpretation. Numerical examples are presented.
2004
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/08 - ANALISI NUMERICA
English
Con Impact Factor ISI
Quasi-interpolation, Tension properties, Parametric curves
Lamberti, P., Manni, C. (2004). Tensioned Quasi--interpolation via Geometric Continuity. ADVANCES IN COMPUTATIONAL MATHEMATICS, 20(1-3), 105-127 [10.1023/A:1025823221346].
Lamberti, P; Manni, C
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

Questo articolo è pubblicato sotto una Licenza Licenza Creative Commons Creative Commons

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/33084
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 11
social impact