We present a new method for the construction of shape-preserving curves approximating a given set of 3D data, based on the space of "quintic like" polynomial splines with variable degrees recently introduced in 2001. These splines - which are $C^3$ and therefore curvature and torsion continuous - possess a very simple geometric structure, which permits to easily handle the shape-constraints.

Costantini, P., Pelosi, F. (2004). Shape-preserving approximation of spatial data. ADVANCES IN COMPUTATIONAL MATHEMATICS, 20, 25-51 [10.1023/A:1025803122254].

Shape-preserving approximation of spatial data

PELOSI, FRANCESCA
2004-01-01

Abstract

We present a new method for the construction of shape-preserving curves approximating a given set of 3D data, based on the space of "quintic like" polynomial splines with variable degrees recently introduced in 2001. These splines - which are $C^3$ and therefore curvature and torsion continuous - possess a very simple geometric structure, which permits to easily handle the shape-constraints.
2004
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/08 - ANALISI NUMERICA
English
Con Impact Factor ISI
splines, best approximation, shape-preservation, tension property, discrete binormal, discrete torsion
Costantini, P., Pelosi, F. (2004). Shape-preserving approximation of spatial data. ADVANCES IN COMPUTATIONAL MATHEMATICS, 20, 25-51 [10.1023/A:1025803122254].
Costantini, P; Pelosi, F
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/33048
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 19
social impact