The lipid second messenger ceramide, which is generated by acidic and neutral sphingomyelinases or ceramide synthases, is a common intermediate of many apoptotic pathways. Metabolism of ceramide involves several enzymes, including glucosylceramide synthase and GD3 synthase, and results in the formation of gangliosides (GM3, GD3, and GT3), which in turn promote the generation of reactive oxygen species (ROS) and apoptosis. Fenretinide, a retinoic acid derivative, is thought to induce apoptosis via increases in ceramide levels, but the link between ceramide and subsequent apoptosis in neuroblastoma cells is unclear.
Lovat, P., DI SANO, F., Corazzari, M., Fazi, B., Donnorso, R., Pearson, A., et al. (2004). Gangliosides link the acidic sphingomyelinase-mediated induction of ceramide to 12-lipoxygenase-dependent apoptosis of neuroblastoma in response to fenretinide. JOURNAL OF THE NATIONAL CANCER INSTITUTE, 96(17), 1288-1299 [10.1093/jnci/djh254].
Gangliosides link the acidic sphingomyelinase-mediated induction of ceramide to 12-lipoxygenase-dependent apoptosis of neuroblastoma in response to fenretinide
DI SANO, FEDERICA;CORAZZARI, MARCO;FAZI, BARBARA;PIACENTINI, MAURO
2004-09-01
Abstract
The lipid second messenger ceramide, which is generated by acidic and neutral sphingomyelinases or ceramide synthases, is a common intermediate of many apoptotic pathways. Metabolism of ceramide involves several enzymes, including glucosylceramide synthase and GD3 synthase, and results in the formation of gangliosides (GM3, GD3, and GT3), which in turn promote the generation of reactive oxygen species (ROS) and apoptosis. Fenretinide, a retinoic acid derivative, is thought to induce apoptosis via increases in ceramide levels, but the link between ceramide and subsequent apoptosis in neuroblastoma cells is unclear.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.