The paper describes a new space of variable degree polynomials. This space is isomorphic to $\P_6$, possesses a Bernstein like basis and has generalized tension properties in the sense that, for limit values of the degrees, its functions approximate quadratic polynomials. The corresponding space of $C^3$, variable degree splines is also studied. This spline space can be profitably used in the construction of shape preserving curves or surfaces.

Costantini, P., Pelosi, F., Sampoli, M. (2008). New spline spaces with generalized tension properties. BIT, 48, 665-688 [doi:10.1007/s10543-008-0195-7].

New spline spaces with generalized tension properties

PELOSI, FRANCESCA;
2008-01-01

Abstract

The paper describes a new space of variable degree polynomials. This space is isomorphic to $\P_6$, possesses a Bernstein like basis and has generalized tension properties in the sense that, for limit values of the degrees, its functions approximate quadratic polynomials. The corresponding space of $C^3$, variable degree splines is also studied. This spline space can be profitably used in the construction of shape preserving curves or surfaces.
2008
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/08 - ANALISI NUMERICA
English
Con Impact Factor ISI
Variable degree polynomials, Bernstein basis, B-splines, shape preservation.
Costantini, P., Pelosi, F., Sampoli, M. (2008). New spline spaces with generalized tension properties. BIT, 48, 665-688 [doi:10.1007/s10543-008-0195-7].
Costantini, P; Pelosi, F; Sampoli, M
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/32994
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact