Sentiment scores measure the strength of customer sentiment when evaluating a product or service. This score is expressed as positive (and negative) for a numerical value between 0 and 100, where 100 is the most favourable possible result, and 0 is the least. This paper aims to combine a product’s sales volume time series with the sentiment score time series of tweets generated by the BERT-NN within a state space model. We apply this model to the monthly sales volume of the Fiat L500 time series from August 2012 to Dec 2018.

Basili, R., Croce, D., Iezzi, D.f., Monte, R. (2023). The Role of BERT in Neural Network Sentiment Scoring for Time Series Forecast. In A.A. Paola Cerchiello (a cura di), Proceedings of the Statistics and Data Science Conference (pp. 55-60). PAVIA : Pavia University Press.

The Role of BERT in Neural Network Sentiment Scoring for Time Series Forecast

Basili R.
Validation
;
Croce D.
Validation
;
Iezzi D. F.
Membro del Collaboration Group
;
Monte R.
Methodology
2023-05-01

Abstract

Sentiment scores measure the strength of customer sentiment when evaluating a product or service. This score is expressed as positive (and negative) for a numerical value between 0 and 100, where 100 is the most favourable possible result, and 0 is the least. This paper aims to combine a product’s sales volume time series with the sentiment score time series of tweets generated by the BERT-NN within a state space model. We apply this model to the monthly sales volume of the Fiat L500 time series from August 2012 to Dec 2018.
mag-2023
Settore SECS-S/05 - STATISTICA SOCIALE
English
Rilevanza internazionale
Capitolo o saggio
BERT, ETS, Neural Network, Sentiment Scoring, state-space Model
Basili, R., Croce, D., Iezzi, D.f., Monte, R. (2023). The Role of BERT in Neural Network Sentiment Scoring for Time Series Forecast. In A.A. Paola Cerchiello (a cura di), Proceedings of the Statistics and Data Science Conference (pp. 55-60). PAVIA : Pavia University Press.
Basili, R; Croce, D; Iezzi, Df; Monte, R
Contributo in libro
File in questo prodotto:
File Dimensione Formato  
PAVIA.pdf

accesso aperto

Licenza: Non specificato
Dimensione 420.7 kB
Formato Adobe PDF
420.7 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/328583
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact