It is assumed that several neuropsychological impairments characterize the cognitive profile of individuals with developmental dyslexia (DD). Phonological and visual processing are often impaired as well as auditory processing, attention, and information processing speed. Although reports in the literature on implicit learning abilities are contradictory, recent neurological and physiological data suggest that these abilities are deficient in individuals with DD. To evaluate implicit learning we administered a classical version of the serial reaction time task (SRTT) related to sequence learning. Using functional magnetic resonance imaging we investigated brain activation patterns associated with implicit learning deficits in 14 adults with DD matched with 14 normal readers. SRTT results indicated the absence of implicit learning in the DD group and different activations between groups mainly in SMA, inferior parietal areas and cerebellar lobule 6. These results can be interpreted in the light of the different capacities for the two groups to build an internal model to guide movements. Further, they explain DD individuals' difficulty in domains not directly related to reading ability.
Menghini, D., Hagberg, G., Caltagirone, C., Petrosini, L., Vicari, S. (2006). Implicit learning deficits in dyslexic adults: an fMRI study. NEUROIMAGE, 33(4), 1218-1226 [10.1016/j.neuroimage.2006.08.024].
Implicit learning deficits in dyslexic adults: an fMRI study
CALTAGIRONE, CARLO;
2006-12-01
Abstract
It is assumed that several neuropsychological impairments characterize the cognitive profile of individuals with developmental dyslexia (DD). Phonological and visual processing are often impaired as well as auditory processing, attention, and information processing speed. Although reports in the literature on implicit learning abilities are contradictory, recent neurological and physiological data suggest that these abilities are deficient in individuals with DD. To evaluate implicit learning we administered a classical version of the serial reaction time task (SRTT) related to sequence learning. Using functional magnetic resonance imaging we investigated brain activation patterns associated with implicit learning deficits in 14 adults with DD matched with 14 normal readers. SRTT results indicated the absence of implicit learning in the DD group and different activations between groups mainly in SMA, inferior parietal areas and cerebellar lobule 6. These results can be interpreted in the light of the different capacities for the two groups to build an internal model to guide movements. Further, they explain DD individuals' difficulty in domains not directly related to reading ability.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.