Time processing is important in several cognitive and motor functions, but it is still unclear how the human brain perceives time intervals of different durations. Processing of time in millisecond and second intervals may depend on different neural networks and there is now considerable evidence to suggest that these intervals are possibly measured by independent brain mechanisms. Using repetitive transcranial magnetic stimulation (rTMS), we determined that the cerebellum is essential in explicit temporal processing of millisecond time intervals. In the first experiment, subjects' performance in a time reproduction task of short (400-600 ms) and long (1,600-2,400 ms) intervals, were evaluated immediately after application of inhibitory rTMS trains over the left and right lateral cerebellum (Cb) and the right dorsolateral prefrontal cortex (DLPFC). We found that rTMS over the lateral cerebellum impaired time perception in the short interval (millisecond range) only; for the second range intervals, impaired timing was found selectively for stimulation of the right DLPFC. In the second experiment, we observed that cerebellar involvement in millisecond time processing was evident when the time intervals were encoded but not when they were retrieved from memory. Our results are consistent with the hypothesis that the cerebellum can be considered as an internal timing system, deputed to assess millisecond time intervals.

Koch, G., Oliveri, M., Torriero, S., Salerno, S., Lo Gerfo, E., Caltagirone, C. (2007). Repetitive TMS of cerebellum interferes with millisecond time processing. EXPERIMENTAL BRAIN RESEARCH, 179(2), 291-299 [10.1007/s00221-006-0791-1].

Repetitive TMS of cerebellum interferes with millisecond time processing

CALTAGIRONE, CARLO
2007-05-01

Abstract

Time processing is important in several cognitive and motor functions, but it is still unclear how the human brain perceives time intervals of different durations. Processing of time in millisecond and second intervals may depend on different neural networks and there is now considerable evidence to suggest that these intervals are possibly measured by independent brain mechanisms. Using repetitive transcranial magnetic stimulation (rTMS), we determined that the cerebellum is essential in explicit temporal processing of millisecond time intervals. In the first experiment, subjects' performance in a time reproduction task of short (400-600 ms) and long (1,600-2,400 ms) intervals, were evaluated immediately after application of inhibitory rTMS trains over the left and right lateral cerebellum (Cb) and the right dorsolateral prefrontal cortex (DLPFC). We found that rTMS over the lateral cerebellum impaired time perception in the short interval (millisecond range) only; for the second range intervals, impaired timing was found selectively for stimulation of the right DLPFC. In the second experiment, we observed that cerebellar involvement in millisecond time processing was evident when the time intervals were encoded but not when they were retrieved from memory. Our results are consistent with the hypothesis that the cerebellum can be considered as an internal timing system, deputed to assess millisecond time intervals.
mag-2007
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MED/26 - NEUROLOGIA
English
Con Impact Factor ISI
Magnetic Resonance Imaging; Humans; Adult; Cerebellum; Time Perception; Data Interpretation, Statistical; Prefrontal Cortex; Transcranial Magnetic Stimulation; Male; Functional Laterality; Female
Koch, G., Oliveri, M., Torriero, S., Salerno, S., Lo Gerfo, E., Caltagirone, C. (2007). Repetitive TMS of cerebellum interferes with millisecond time processing. EXPERIMENTAL BRAIN RESEARCH, 179(2), 291-299 [10.1007/s00221-006-0791-1].
Koch, G; Oliveri, M; Torriero, S; Salerno, S; Lo Gerfo, E; Caltagirone, C
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/32790
Citazioni
  • ???jsp.display-item.citation.pmc??? 66
  • Scopus 169
  • ???jsp.display-item.citation.isi??? 162
social impact