We study the biclosedness of the monoidal categories of modules and comodules over a (left or right) Hopf algebroid, along with their bimodule category centres over the respective opposite categories and a corresponding categorical equivalence to anti Yetter-Drinfel'd contramodules and anti Yetter-Drinfel'd modules, respectively. This is directly connected to the existence of a trace functor on the monoidal categories of modules and comodules in question, which in turn allows to recover (or define) cyclic operators enabling cyclic cohomology.

Kowalzig, N. (2023). Centres, trace functors, and cyclic cohomology. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS [10.1142/S0219199722500791].

Centres, trace functors, and cyclic cohomology

Kowalzig, N
2023-01-01

Abstract

We study the biclosedness of the monoidal categories of modules and comodules over a (left or right) Hopf algebroid, along with their bimodule category centres over the respective opposite categories and a corresponding categorical equivalence to anti Yetter-Drinfel'd contramodules and anti Yetter-Drinfel'd modules, respectively. This is directly connected to the existence of a trace functor on the monoidal categories of modules and comodules in question, which in turn allows to recover (or define) cyclic operators enabling cyclic cohomology.
2023
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03 - GEOMETRIA
English
Closed monoidal categories; bimodule categories; centres; cyclic cohomology; contramodules; Hopf algebroids
Kowalzig, N. (2023). Centres, trace functors, and cyclic cohomology. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS [10.1142/S0219199722500791].
Kowalzig, N
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/326963
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact