We prove regularity results for the unique minimizer of the total variation functional, currently used in image processing analysis since the work by Rudin, Osher and Fatemi. In particular, we show that if the source term f is locally (respectively, globally) Lipschitz, then the solution has the same regularity with local (respectively, global) Lipschitz norm estimated accordingly. The result is proved in any dimension and for any (regular) domain. So far we extend a similar result proved earlier by Caselles, Chambolle and Novaga for dimension N <= 7 and (in case of the global regularity) for convex domains.

Porretta, A. (2021). On the regularity of the total variation minimizers. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 23(1) [10.1142/S0219199719500822].

On the regularity of the total variation minimizers

Porretta, A
2021-01-01

Abstract

We prove regularity results for the unique minimizer of the total variation functional, currently used in image processing analysis since the work by Rudin, Osher and Fatemi. In particular, we show that if the source term f is locally (respectively, globally) Lipschitz, then the solution has the same regularity with local (respectively, global) Lipschitz norm estimated accordingly. The result is proved in any dimension and for any (regular) domain. So far we extend a similar result proved earlier by Caselles, Chambolle and Novaga for dimension N <= 7 and (in case of the global regularity) for convex domains.
2021
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Total variation functional
Lipschitz regularity
gradient bounds
Porretta, A. (2021). On the regularity of the total variation minimizers. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 23(1) [10.1142/S0219199719500822].
Porretta, A
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
CCM-reprint.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 263.51 kB
Formato Adobe PDF
263.51 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/326483
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact