This article has two main objectives: one is to describe some extensions of an adaptive Algebraic Multigrid (AMG) method of the form previously proposed by the first and third authors, and a second one is to present a new software framework, named BootCMatch, which implements all the components needed to build and apply the described adaptive AMG both as a stand-alone solver and as a preconditioner in a Krylov method. The adaptive AMG presented is meant to handle general symmetric and positive definite (SPD) sparse linear systems, without assuming any a priori information of the problem and its origin; the goal of adaptivity is to achieve a method with a prescribed convergence rate. The presented method exploits a general coarsening process based on aggregation of unknowns, obtained by a maximum weight matching in the adjacency graph of the system matrix. More specifically, a maximum product matching is employed to define an effective smoother subspace (complementary to the coarse space), a process referred to as compatible relaxation, at every level of the recursive two-level hierarchical AMG process. Results on a large variety of test cases and comparisons with related work demonstrate the reliability and efficiency of the method and of the software.
D'Ambra, P., Filippone, S., Vassilevski, P.s. (2018). BootCMatch: A software package for bootstrap AMG based on graph weighted matching. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 44(4), 1-25 [10.1145/3190647].
BootCMatch: A software package for bootstrap AMG based on graph weighted matching
Filippone S.;
2018-01-01
Abstract
This article has two main objectives: one is to describe some extensions of an adaptive Algebraic Multigrid (AMG) method of the form previously proposed by the first and third authors, and a second one is to present a new software framework, named BootCMatch, which implements all the components needed to build and apply the described adaptive AMG both as a stand-alone solver and as a preconditioner in a Krylov method. The adaptive AMG presented is meant to handle general symmetric and positive definite (SPD) sparse linear systems, without assuming any a priori information of the problem and its origin; the goal of adaptivity is to achieve a method with a prescribed convergence rate. The presented method exploits a general coarsening process based on aggregation of unknowns, obtained by a maximum weight matching in the adjacency graph of the system matrix. More specifically, a maximum product matching is employed to define an effective smoother subspace (complementary to the coarse space), a process referred to as compatible relaxation, at every level of the recursive two-level hierarchical AMG process. Results on a large variety of test cases and comparisons with related work demonstrate the reliability and efficiency of the method and of the software.File | Dimensione | Formato | |
---|---|---|---|
a39-dambra.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
399.13 kB
Formato
Adobe PDF
|
399.13 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.