The importance of robust flight delay prediction has recently increased in the air transportation industry. This industry seeks alternative methods and technologies for more robust flight delay prediction because of its significance for all stakeholders. The most affected are airlines that suffer from monetary and passenger loyalty losses. Several studies have attempted to analysed and solve flight delay prediction problems using machine learning methods. This research proposes a novel alternative method, namely social ski driver conditional autoregressive-based (SSDCA-based) deep learning. Our proposed method combines the Social Ski Driver algorithm with Conditional Autoregressive Value at Risk by Regression Quantiles. We consider the most relevant instances from the training dataset, which are the delayed flights. We applied data transformation to stabilise the data variance using Yeo-Johnson. We then perform the training and testing of our data using deep recurrent neural network (DRNN) and SSDCA-based algorithms. The SSDCA-based optimisation algorithm helped us choose the right network architecture with better accuracy and less error than the existing literature. The results of our proposed SSDCA-based method and existing benchmark methods were compared. The efficiency and computational time of our proposed method are compared against the existing benchmark methods. The SSDCA-based DRNN provides a more accurate flight delay prediction with 0.9361 and 0.9252 accuracy rates on both dataset-1 and dataset-2, respectively. To show the reliability of our method, we compared it with other meta-heuristic approaches. The result is that the SSDCA-based DRNN outperformed all existing benchmark methods tested in our experiment.

Bisandu, D.b., Moulitsas, I., Filippone, S. (2022). Social ski driver conditional autoregressive-based deep learning classifier for flight delay prediction. NEURAL COMPUTING & APPLICATIONS, 34(11), 8777-8802 [10.1007/s00521-022-06898-y].

Social ski driver conditional autoregressive-based deep learning classifier for flight delay prediction

Filippone S.
2022-01-01

Abstract

The importance of robust flight delay prediction has recently increased in the air transportation industry. This industry seeks alternative methods and technologies for more robust flight delay prediction because of its significance for all stakeholders. The most affected are airlines that suffer from monetary and passenger loyalty losses. Several studies have attempted to analysed and solve flight delay prediction problems using machine learning methods. This research proposes a novel alternative method, namely social ski driver conditional autoregressive-based (SSDCA-based) deep learning. Our proposed method combines the Social Ski Driver algorithm with Conditional Autoregressive Value at Risk by Regression Quantiles. We consider the most relevant instances from the training dataset, which are the delayed flights. We applied data transformation to stabilise the data variance using Yeo-Johnson. We then perform the training and testing of our data using deep recurrent neural network (DRNN) and SSDCA-based algorithms. The SSDCA-based optimisation algorithm helped us choose the right network architecture with better accuracy and less error than the existing literature. The results of our proposed SSDCA-based method and existing benchmark methods were compared. The efficiency and computational time of our proposed method are compared against the existing benchmark methods. The SSDCA-based DRNN provides a more accurate flight delay prediction with 0.9361 and 0.9252 accuracy rates on both dataset-1 and dataset-2, respectively. To show the reliability of our method, we compared it with other meta-heuristic approaches. The result is that the SSDCA-based DRNN outperformed all existing benchmark methods tested in our experiment.
2022
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore ING-INF/05 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI
English
Deep long short-term memory
Deep recurrent neural network
Flight delay prediction
Social ski driver
Yeo–Johnson Transformation
Bisandu, D.b., Moulitsas, I., Filippone, S. (2022). Social ski driver conditional autoregressive-based deep learning classifier for flight delay prediction. NEURAL COMPUTING & APPLICATIONS, 34(11), 8777-8802 [10.1007/s00521-022-06898-y].
Bisandu, Db; Moulitsas, I; Filippone, S
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Bisandu2022_Article_SocialSkiDriverConditionalAuto.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.41 MB
Formato Adobe PDF
4.41 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/325943
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 19
social impact