We discuss the Bisognano–Wichmann property for localPoincaré covariant nets of standard subspaces. We provide a sufficient algebraic condition on the covariant representation ensuring the Bisognano–Wichmann and the duality properties without further assumptions on the net. We call it modularity condition. It holds for direct integrals of scalar massive and massless representations. We present a class of massive modular covariant nets not satisfying the Bisognano–Wichmann property. Furthermore, we give an outlook on the relation between the Bisognano–Wichmann property and the split property in the standard subspace setting.

Morinelli, V. (2018). The Bisognano–Wichmann property on nets of standard subspaces, some sufficient conditions. ANNALES HENRI POINCARE', 19(3), 937-958 [10.1007/s00023-017-0636-4].

The Bisognano–Wichmann property on nets of standard subspaces, some sufficient conditions

Morinelli V.
2018-01-01

Abstract

We discuss the Bisognano–Wichmann property for localPoincaré covariant nets of standard subspaces. We provide a sufficient algebraic condition on the covariant representation ensuring the Bisognano–Wichmann and the duality properties without further assumptions on the net. We call it modularity condition. It holds for direct integrals of scalar massive and massless representations. We present a class of massive modular covariant nets not satisfying the Bisognano–Wichmann property. Furthermore, we give an outlook on the relation between the Bisognano–Wichmann property and the split property in the standard subspace setting.
2018
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Morinelli, V. (2018). The Bisognano–Wichmann property on nets of standard subspaces, some sufficient conditions. ANNALES HENRI POINCARE', 19(3), 937-958 [10.1007/s00023-017-0636-4].
Morinelli, V
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Morinelli The Bisognano-Wichmann property of standard subspaces, some sufficient conditions.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 569.67 kB
Formato Adobe PDF
569.67 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/324823
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact