If g is a nondecreasing nonnegative continuous function we prove that any solution of - Δu + g (u) = 0 in a half plane which blows-up locally on the boundary, in a fairly general way, depends only on the normal variable. We extend this result to problems in the complement of a disk. Our main application concerns the exponential nonlinearity g(u) = eau, or power-like growths of g at infinity. Our method is based upon a combination of the Kelvin transform and moving plane method.

Porretta, A., Veron, L. (2004). Symmetry properties of solutions of semilinear elliptic equations in the plane. MANUSCRIPTA MATHEMATICA, 115(2), 239-258 [10.1007/s00229-004-0498-1].

Symmetry properties of solutions of semilinear elliptic equations in the plane

PORRETTA, ALESSIO;
2004-01-01

Abstract

If g is a nondecreasing nonnegative continuous function we prove that any solution of - Δu + g (u) = 0 in a half plane which blows-up locally on the boundary, in a fairly general way, depends only on the normal variable. We extend this result to problems in the complement of a disk. Our main application concerns the exponential nonlinearity g(u) = eau, or power-like growths of g at infinity. Our method is based upon a combination of the Kelvin transform and moving plane method.
2004
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/05 - ANALISI MATEMATICA
English
elliptic equations; Kelvin transform; asymptotic expansions
Porretta, A., Veron, L. (2004). Symmetry properties of solutions of semilinear elliptic equations in the plane. MANUSCRIPTA MATHEMATICA, 115(2), 239-258 [10.1007/s00229-004-0498-1].
Porretta, A; Veron, L
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/32412
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 2
social impact