For p subset of R2, a connected, open, bounded set whose boundary is a finite union of disjoint polygons whose vertices have integer coordinates, the logarithm of the discrete Laplacian on Lp boolean AND Z2 with Dirichlet boundary conditions has an asymptotic expression for large L involving the zeta-regularized determinant of the associated continuum Laplacian. When p is not simply connected, this result extends to Laplacians acting on two-valued functions with a specified monodromy class.

Greenblatt, R.l. (2023). Discrete and zeta-regularized determinants of the Laplacian on polygonal domains with Dirichlet boundary conditions. JOURNAL OF MATHEMATICAL PHYSICS, 64(4) [10.1063/5.0062138].

Discrete and zeta-regularized determinants of the Laplacian on polygonal domains with Dirichlet boundary conditions

Rafael L. Greenblatt
2023-01-01

Abstract

For p subset of R2, a connected, open, bounded set whose boundary is a finite union of disjoint polygons whose vertices have integer coordinates, the logarithm of the discrete Laplacian on Lp boolean AND Z2 with Dirichlet boundary conditions has an asymptotic expression for large L involving the zeta-regularized determinant of the associated continuum Laplacian. When p is not simply connected, this result extends to Laplacians acting on two-valued functions with a specified monodromy class.
2023
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/07 - FISICA MATEMATICA
English
Con Impact Factor ISI
Greenblatt, R.l. (2023). Discrete and zeta-regularized determinants of the Laplacian on polygonal domains with Dirichlet boundary conditions. JOURNAL OF MATHEMATICAL PHYSICS, 64(4) [10.1063/5.0062138].
Greenblatt, Rl
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Dirichlet_Laplacian_determinant.pdf

solo utenti autorizzati

Descrizione: arxiv preprint
Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 739.3 kB
Formato Adobe PDF
739.3 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Zeta regularized determinant.pdf

accesso aperto

Descrizione: Versione pubblicato
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright degli autori
Dimensione 5.62 MB
Formato Adobe PDF
5.62 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/323803
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact