Jensen's inequality for concave functions J J (f) du < j (ff dt) (1) or for convex functions i ( fdI) < J J(f) dA (2) is valid when ,L is a probability measure. In Sections 2 and 7 we extend (1) and (2) to arbitrary positive measures under the assumption that J is positively homogeneous. In Section 6 we show how the H6lder, Minkowski, and Hanner inequalities follow directly from (1) and (2). In particular, we show the one-to-one correspondence between inequalities such as (2) and continuous convex functions j: [0, +oo) -> 1R such that lim,+OO j (t)/t exists and is finite.

Roselli, P., Willem, M. (2002). A convexity inequality. THE AMERICAN MATHEMATICAL MONTHLY, 109(1), 64-70 [10.1080/00029890.2002.11919839].

A convexity inequality

ROSELLI, PAOLO;
2002-01-01

Abstract

Jensen's inequality for concave functions J J (f) du < j (ff dt) (1) or for convex functions i ( fdI) < J J(f) dA (2) is valid when ,L is a probability measure. In Sections 2 and 7 we extend (1) and (2) to arbitrary positive measures under the assumption that J is positively homogeneous. In Section 6 we show how the H6lder, Minkowski, and Hanner inequalities follow directly from (1) and (2). In particular, we show the one-to-one correspondence between inequalities such as (2) and continuous convex functions j: [0, +oo) -> 1R such that lim,+OO j (t)/t exists and is finite.
2002
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
Convexity; Jensen's inequality; Lebesgue; Hanner; Hölder; Minkowski; measure
Roselli, P., Willem, M. (2002). A convexity inequality. THE AMERICAN MATHEMATICAL MONTHLY, 109(1), 64-70 [10.1080/00029890.2002.11919839].
Roselli, P; Willem, M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
2695768.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 202.67 kB
Formato Adobe PDF
202.67 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/323784
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact