We prove the existence of a ground state positive solution of Schrödinger-Poisson systems in the plane of the form where p≥4, γ, b>0 and the potential V is assumed to be positive and unbounded at infinity. On the potential we do not require any symmetry or periodicity assumption, and it is not supposed it has a limit at infinity. We approach the problem by variational methods, using a variant of the mountain pass theorem and the Cerami compactness condition.

Molle, R., Sardilli, A. (2022). On a planar Schrödinger-Poisson system involving a non-symmetric potential. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 65(4), 1133-1146 [10.1017/S0013091522000517].

On a planar Schrödinger-Poisson system involving a non-symmetric potential

Molle R.
;
2022-01-01

Abstract

We prove the existence of a ground state positive solution of Schrödinger-Poisson systems in the plane of the form where p≥4, γ, b>0 and the potential V is assumed to be positive and unbounded at infinity. On the potential we do not require any symmetry or periodicity assumption, and it is not supposed it has a limit at infinity. We approach the problem by variational methods, using a variant of the mountain pass theorem and the Cerami compactness condition.
2022
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
nonlinear Schrödinger-Poisson systems
planar case
positive solutions
Molle, R., Sardilli, A. (2022). On a planar Schrödinger-Poisson system involving a non-symmetric potential. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 65(4), 1133-1146 [10.1017/S0013091522000517].
Molle, R; Sardilli, A
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
2206.01941.pdf

solo utenti autorizzati

Tipologia: Documento in Pre-print
Licenza: Copyright dell'editore
Dimensione 190.87 kB
Formato Adobe PDF
190.87 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/323743
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact