Given a matrix A ∈ Cn×n there exists a nonsingular matrix V such that V−1AV = J, where J is a very sparse matrix with a diagonal block structure, known as the Jordan canonical form (JCF) of A. Assume that A is nonsingular and that V and J are given. How to obtain Vˆ and ˆJ such that Vˆ −1A−1Vˆ = ˆJ and ˆJ is the JCF of A−1? Curiously, the answer involves the Pascal matrix. For the Frobenius canonical form (FCF), where blocks are companion matrices, the analogous question has a very simple answer. Jordan blocks and companions are non-derogatory lower Hessenberg matrices. The answers to the two questions will be obtained by solving two linear matrix equations involving these matrices.

Bozzo, E., Di Fiore, C., Deidda, P. (2023). The Jordan and Frobenius pairs of the inverse. LINEAR & MULTILINEAR ALGEBRA, 71(10), 1730-1735 [10.1080/03081087.2022.2073431].

The Jordan and Frobenius pairs of the inverse

Bozzo E
;
Di Fiore C;Deidda P
2023-01-01

Abstract

Given a matrix A ∈ Cn×n there exists a nonsingular matrix V such that V−1AV = J, where J is a very sparse matrix with a diagonal block structure, known as the Jordan canonical form (JCF) of A. Assume that A is nonsingular and that V and J are given. How to obtain Vˆ and ˆJ such that Vˆ −1A−1Vˆ = ˆJ and ˆJ is the JCF of A−1? Curiously, the answer involves the Pascal matrix. For the Frobenius canonical form (FCF), where blocks are companion matrices, the analogous question has a very simple answer. Jordan blocks and companions are non-derogatory lower Hessenberg matrices. The answers to the two questions will be obtained by solving two linear matrix equations involving these matrices.
2023
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/08 - ANALISI NUMERICA
English
Con Impact Factor ISI
Jordan canonical form; Frobenius canonical form; linear matrix equation; non-derogatory Hessenberg matrix
Bozzo, E., Di Fiore, C., Deidda, P. (2023). The Jordan and Frobenius pairs of the inverse. LINEAR & MULTILINEAR ALGEBRA, 71(10), 1730-1735 [10.1080/03081087.2022.2073431].
Bozzo, E; Di Fiore, C; Deidda, P
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
BozzoDiFioreDeidda.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 510.85 kB
Formato Adobe PDF
510.85 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/322803
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact